Difference between revisions of "MGI / Balkans coordinate systems"

(Other coordinate systems of interest)
m
 
Line 12: Line 12:
 
* [[Image:logo_coord.gif|18px]] [http://spatial-analyst.net/CRS/croatia.csy croatia.csy] : HTRS96/TM coordinate system in ILWIS format.
 
* [[Image:logo_coord.gif|18px]] [http://spatial-analyst.net/CRS/croatia.csy croatia.csy] : HTRS96/TM coordinate system in ILWIS format.
 
* [[Image:Icon_zip.png|18px]] [http://spatial-analyst.net/DATA/grid_croatia_etrs_laea_1k.zip grid_croatia_etrs_laea_1k.shp] : European (ETRS) grid nodes for Croatia.
 
* [[Image:Icon_zip.png|18px]] [http://spatial-analyst.net/DATA/grid_croatia_etrs_laea_1k.zip grid_croatia_etrs_laea_1k.shp] : European (ETRS) grid nodes for Croatia.
 +
* [http://spatial-analyst.net/PDF/HR_geoid_transformation_parameters_per_county.pdf HR geoid transformation pars] : Transformation parameters per each county in Croatia.
 
}}  
 
}}  
  
Line 100: Line 101:
 
<br>  
 
<br>  
  
The difference from the original Bessel's ellipsoid (so-called [http://www.mapref.org/GeodeticReferenceSystemsAT.html ''Hermannskogel datum'']) to the current referent system ([http://en.wikipedia.org/wiki/WGS84 WGS84]) is non-systematic. The national land surveying agencies would typically set-up a network of referent points and then calculate the mean transformation parameters (local geoid) that are in average accurate enough for the most of the country (see map of the errors for the HRG2000 in figure below). There are in fact several sources for the global transformation parameters that can be used to link the local datum with the WGS84 system. The most accurate global transformation parameters are the one provided by the national land survey agency. For example, in Croatia, the global transformation parameters (HRG2000) have been estimated using 1780 referent points (the average 3D error is 0.7 meters) by the State Geodetic Authority. In Serbia, the global transformation parameters were determined based on 1217 referent points (the average 3D error is 0.4 meters).  
+
The difference from the original Bessel's ellipsoid (so-called [http://www.mapref.org/GeodeticReferenceSystemsAT.html ''Hermannskogel datum'']) to the current referent system ([http://en.wikipedia.org/wiki/WGS84 WGS84]) is non-systematic. The national land surveying agencies would typically set-up a network of referent points and then calculate the mean transformation parameters (local geoid) that are in average accurate enough for the most of the area of interest. There are in fact several sources for the global transformation parameters that can be used to link the local datum with the WGS84 system. The most accurate global transformation parameters are the one provided by the national land survey agency (see for example the [http://spatial-analyst.net/PDF/HR_geoid_transformation_parameters_per_county.pdf transformation parameters for each county in Croatia]). There are also global transformation parameters that can be used for a wider area, but then the mean positional accuracy can exceed 1 m. For example, In Croatia, transformation parameters for HRG2000 have been estimated using 1780 referent points (the average 3D error is 0.7 meters; see map of the errors for the HRG2000 in figure below) by the State Geodetic Authority. In Serbia, the global transformation parameters were determined based on 1217 referent points (the average 3D error is 0.4 meters).  
  
 
<br>  
 
<br>  
Line 109: Line 110:
 
|}
 
|}
  
The MGI / Balkans Zone 6 in the [http://trac.osgeo.org/proj/wiki/GenParms PROJ.4] should be set as:  
+
The MGI / Balkans Zone 6 in the [http://trac.osgeo.org/proj/wiki/GenParms PROJ.4] should be set as (thanks to Vedran Stojnović for the correct reference):  
  
 
<pre>+proj=tmerc +lat_0=0 +lon_0=18 +k=0.9999 +x_0=6500000 +y_0=0 +ellps=bessel  
 
<pre>+proj=tmerc +lat_0=0 +lon_0=18 +k=0.9999 +x_0=6500000 +y_0=0 +ellps=bessel  
   +towgs84=550.499,164.116,475.142,5.80967,2.07902,-11.62386,0.99999445824
+
   +towgs84=550.499,164.116,475.142,5.80967,2.07902,-11.62386,5.541764
 
   +units=m
 
   +units=m
 
</pre>  
 
</pre>  
Line 163: Line 164:
 
To validate these parameters, we can use a referent point (T249) for which we should have both WGS84 geographic coordinates and the local coordinates:  
 
To validate these parameters, we can use a referent point (T249) for which we should have both WGS84 geographic coordinates and the local coordinates:  
  
<geshi lang=R lines=0>
+
<pre>
 
> T249 <- data.frame(Lat=as(char2dms("45d33'46.3998\"N"), "numeric"),
 
> T249 <- data.frame(Lat=as(char2dms("45d33'46.3998\"N"), "numeric"),
 
+    Lon=as(char2dms("18d41'47.80491\"E"), "numeric"))
 
+    Lon=as(char2dms("18d41'47.80491\"E"), "numeric"))
 
> coordinates(T249) <- ~Lon+Lat
 
> coordinates(T249) <- ~Lon+Lat
 
> proj4string(T249) <- CRS("+proj=longlat +datum=WGS84")
 
> proj4string(T249) <- CRS("+proj=longlat +datum=WGS84")
</geshi>
+
</pre>
  
 
To derive the local coordinates we use the <tt>spTransform</tt> method available in the [http://cran.r-project.org/web/packages/rgdal/ rgdal] package:  
 
To derive the local coordinates we use the <tt>spTransform</tt> method available in the [http://cran.r-project.org/web/packages/rgdal/ rgdal] package:  
  
<geshi lang=R lines=0>
+
<pre>
 
> T249.xy <- spTransform(T249, CRS("+proj=tmerc +lat_0=0 +lon_0=18 +k=0.9999
 
> T249.xy <- spTransform(T249, CRS("+proj=tmerc +lat_0=0 +lon_0=18 +k=0.9999
 
     +x_0=6500000 +y_0=0 +ellps=bessel  
 
     +x_0=6500000 +y_0=0 +ellps=bessel  
     +towgs84=550.499,164.116,475.142,5.80967,2.07902,-11.62386,0.99999445824
+
     +towgs84=550.499,164.116,475.142,5.80967,2.07902,-11.62386,5.541764
 
     +units=m"))
 
     +units=m"))
 
> T249.xy
 
> T249.xy
Line 184: Line 185:
 
#!
 
#!
 
# should be: X=6554781.07,  Y=5046738.03
 
# should be: X=6554781.07,  Y=5046738.03
</geshi>  
+
</pre>
  
 
The difference between the true and transformed local coordinates is:  
 
The difference between the true and transformed local coordinates is:  
  
<geshi lang=R lines=0>  
+
<pre>  
 
> spDistsN1(matrix(c(6554781.07, 5046738.03), ncol=2), coordinates(T249.xy))
 
> spDistsN1(matrix(c(6554781.07, 5046738.03), ncol=2), coordinates(T249.xy))
 
[1] 1.2709
 
[1] 1.2709
</geshi>  
+
</pre>  
  
 
Hence the difference is in fact significant (but can be ignored for more general scales e.g. &lt;1:25000). The only way to increase the precision of the datum shift parameters would be to re-estimate them locally using local referent points. This can be done for example by using 3-4 local reference points and the [http://spatial-analyst.net/ILWIS/htm/ilwisapp/find_datum_trans_params_inputpage.htm find datum transformation parameters] function in ILWIS.  
 
Hence the difference is in fact significant (but can be ignored for more general scales e.g. &lt;1:25000). The only way to increase the precision of the datum shift parameters would be to re-estimate them locally using local referent points. This can be done for example by using 3-4 local reference points and the [http://spatial-analyst.net/ILWIS/htm/ilwisapp/find_datum_trans_params_inputpage.htm find datum transformation parameters] function in ILWIS.  
  
 
Next, we can check if the point ''falls'' where it should in Google maps:  
 
Next, we can check if the point ''falls'' where it should in Google maps:  
<geshi lang=R lines=0>  
+
<pre>  
 
> system(paste('"c:/Program Files/firefox/firefox.exe"', ' -url http://maps.google.com/maps?&amp;ll=',  
 
> system(paste('"c:/Program Files/firefox/firefox.exe"', ' -url http://maps.google.com/maps?&amp;ll=',  
 
+    coordinates(T249)[2],',',coordinates(T249)[1],'&amp;t=h&amp;z=19&amp;q=',  
 
+    coordinates(T249)[2],',',coordinates(T249)[1],'&amp;t=h&amp;z=19&amp;q=',  
Line 202: Line 203:
 
#!
 
#!
 
# http://maps.google.com/maps?&ll=45.56288883,18.696612475&t=h&z=19&q=45.56288883,18.696612475
 
# http://maps.google.com/maps?&ll=45.56288883,18.696612475&t=h&z=19&q=45.56288883,18.696612475
</geshi>  
+
</pre>  
  
Which shows the correct location in the Google Maps:
+
Which shows the correct location in the [http://maps.google.com/maps?&ll=45.56288883,18.696612475&t=h&z=19&q=45.56288883,18.696612475 Google Maps].
 
 
<widget type="googlemap" width="300">
 
      <marker lat="45.56288883" lon="18.696612475">
 
        T249
 
      </marker>
 
</widget>
 
  
 
Or use the [http://cran.r-project.org/web/packages/RgoogleMaps/ RgoogleMaps] library to plot the maps in R:
 
Or use the [http://cran.r-project.org/web/packages/RgoogleMaps/ RgoogleMaps] library to plot the maps in R:
  
<geshi lang=R lines=0>
+
<pre>
 
> library(RgoogleMaps)
 
> library(RgoogleMaps)
 
> MyMap <- GetMap.bbox(center=rev(coordinates(T249)), zoom=18, destfile="T249.png", maptype ="satellite")
 
> MyMap <- GetMap.bbox(center=rev(coordinates(T249)), zoom=18, destfile="T249.png", maptype ="satellite")
 
> PlotOnStaticMap(MyMap, lat=coordinates(T249)[,2], lon=coordinates(T249)[,1])
 
> PlotOnStaticMap(MyMap, lat=coordinates(T249)[,2], lon=coordinates(T249)[,1])
</geshi>
+
</pre>
  
 
which will produce this plot:
 
which will produce this plot:
Line 239: Line 234:
 
A simplified (but also less precise) solution is to use the 3 parameter datum shift (so called [http://spatial-analyst.net/ILWIS/htm/ilwisapp/find_datum_trans_params_methodpage.htm ''Molodensky'' method]):  
 
A simplified (but also less precise) solution is to use the 3 parameter datum shift (so called [http://spatial-analyst.net/ILWIS/htm/ilwisapp/find_datum_trans_params_methodpage.htm ''Molodensky'' method]):  
  
<geshi lang=R lines=0>
+
<pre>
 
> spTransform(T249, CRS("+proj=tmerc +lat_0=0 +lon_0=18 +k=0.9999 +x_0=6500000
 
> spTransform(T249, CRS("+proj=tmerc +lat_0=0 +lon_0=18 +k=0.9999 +x_0=6500000
 
     +y_0=0 +ellps=bessel +towgs84=682,-199,480 +units=m"))
 
     +y_0=0 +ellps=bessel +towgs84=682,-199,480 +units=m"))
Line 246: Line 241:
 
#!          Lon      Lat
 
#!          Lon      Lat
 
#! [1,] 6554780.2 5046738.3
 
#! [1,] 6554780.2 5046738.3
</geshi>  
+
</pre>  
  
 
Note that the definition of the MGI / Balkans coordinate systems ([http://spatialreference.org/ref/epsg/31275/ EPSG:31275], [http://spatialreference.org/ref/epsg/31276/ EPSG:31276], [http://spatialreference.org/ref/epsg/31277/ EPSG:31277]) available via [http://spatialreference.org http://spatialreference.org] is incomplete because this database does not contain any definition of the geodetic datum. If the geodetic datum is missing, the difference from the true location will be even few hundreds of meters. In fact, if only one datum shift parameter is missing or is in error, transformation of coordinates will lead to frustrations. On the other hand, even if you correctly set-up the (global) coordinate system parameters, you will not be able to achieve precision better than 0.5 meters (see above).  
 
Note that the definition of the MGI / Balkans coordinate systems ([http://spatialreference.org/ref/epsg/31275/ EPSG:31275], [http://spatialreference.org/ref/epsg/31276/ EPSG:31276], [http://spatialreference.org/ref/epsg/31277/ EPSG:31277]) available via [http://spatialreference.org http://spatialreference.org] is incomplete because this database does not contain any definition of the geodetic datum. If the geodetic datum is missing, the difference from the true location will be even few hundreds of meters. In fact, if only one datum shift parameter is missing or is in error, transformation of coordinates will lead to frustrations. On the other hand, even if you correctly set-up the (global) coordinate system parameters, you will not be able to achieve precision better than 0.5 meters (see above).  
Line 262: Line 257:
  
 
*HRG2000 geoid: dX, dY, dZ, Rx, Ry, Rz, M_BF = 550.499, 164.116, 475.142, 5.80967, 2.07902, -11.62386, 0.99999445824;  
 
*HRG2000 geoid: dX, dY, dZ, Rx, Ry, Rz, M_BF = 550.499, 164.116, 475.142, 5.80967, 2.07902, -11.62386, 0.99999445824;  
*HTRO96 geoid: dX, dY, dZ, Rx, Ry, Rz, M_BF = 550.5670, 164.6118, 474.1386, -5.976766, -2.099773, 11.495481, 0.999994552075;
+
*HTRS96 geoid: dX, dY, dZ, Rx, Ry, Rz, M_BF = 550.5670, 164.6118, 474.1386, -5.976766, -2.099773, 11.495481, 0.999994552075;
 
*estimated by the [http://www.rgz.gov.rs Serbian Geodetic Authority]: dX, dY, dZ, Rx, Ry, Rz, M_BF = 574.027, 170.175, 401.545, 4.88786, -0.66524, -13.24673, 0.99999311067;  
 
*estimated by the [http://www.rgz.gov.rs Serbian Geodetic Authority]: dX, dY, dZ, Rx, Ry, Rz, M_BF = 574.027, 170.175, 401.545, 4.88786, -0.66524, -13.24673, 0.99999311067;  
 
*estimated by the [http://www.mapref.org/GeodeticReferenceSystemsAT.html Austrian Militärgeographisches Institut] (MGI) and valid for the whole Western Balkans region: dX, dY, dZ, Rx, Ry, Rz, M_BF = -678.059, -179.019, -585.545, -14.43, -0.42, -18.02, 0.999997490;
 
*estimated by the [http://www.mapref.org/GeodeticReferenceSystemsAT.html Austrian Militärgeographisches Institut] (MGI) and valid for the whole Western Balkans region: dX, dY, dZ, Rx, Ry, Rz, M_BF = -678.059, -179.019, -585.545, -14.43, -0.42, -18.02, 0.999997490;
Line 273: Line 268:
 
== Other coordinate systems of interest  ==
 
== Other coordinate systems of interest  ==
  
The most recent coordinate system used in Croatia to display the whole country is known as the Croatian Terrestrial Reference Framework HTRO96/TM, centered at '''16°30''' (Basic, 2001). Its parameters are ():
+
The most recent coordinate system used in Croatia to display the whole country is known as the [http://spatialreference.org/ref/epsg/3765/ '''Croatian Terrestrial Reference System'''] (HTRS96/TM) centered at '''16°30'''. Its parameters are ([http://hrcak.srce.hr/file/20088 Lapaine, 2007]):
 
   
 
   
 
<pre>
 
<pre>
   +proj=tmerc +lat_0=0 +lon_0=16.5 +k=0.9999 +x_0=500000 +y_0=0 +ellps=ETRF89
+
   +proj=tmerc +lat_0=0 +lon_0=16.5 +k=0.9999 +x_0=500000 +y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs
   +towgs84=550.5670,164.6118,474.1386,-5.976766,-2.099773,11.495481,0.99999445824
+
</pre>
  +units=m
+
 
 +
which is aligned on the [http://en.wikipedia.org/wiki/European_Terrestrial_Reference_System_1989 European Terrestrial Reference System] (ETRS89). The most recent estimate of the global transformation parameters from the old geodetic datum (from year 1901) to HRTS96/TM for Croatian territory is:
 +
 
 +
<pre>
 +
   +towgs84=550.5670,164.6118,474.1386,-5.976766,-2.099773,11.495481,5.541764
 
</pre>
 
</pre>
  
 
Another coordinate system used by Military and similar organizations is the Universal Transverse Mercator system (Balkans falls in two zones: 33N and 34N). The parameters for Croatia are:  
 
Another coordinate system used by Military and similar organizations is the Universal Transverse Mercator system (Balkans falls in two zones: 33N and 34N). The parameters for Croatia are:  
  
<pre>+proj=utm +zone=33 +ellps=WGS84 +datum=WGS84 +units=m +no_defs
+
<pre>
 +
  +proj=utm +zone=33 +ellps=WGS84 +datum=WGS84 +units=m +no_defs
 
</pre>  
 
</pre>  
  
Line 290: Line 290:
 
To generate the grid cell id in the [http://www.ec-gis.org European Reference Grid System] ([http://spatialreference.org/ref/epsg/3035/ EPSG:3035]), we can run:
 
To generate the grid cell id in the [http://www.ec-gis.org European Reference Grid System] ([http://spatialreference.org/ref/epsg/3035/ EPSG:3035]), we can run:
  
<geshi lang=R lines=0>
+
<pre>
 
> library(maptools); library(rgdal)
 
> library(maptools); library(rgdal)
  
Line 324: Line 324:
 
> out <- paste(getwd(), "grid_croatia_etrs_laea_1k", sep="/")
 
> out <- paste(getwd(), "grid_croatia_etrs_laea_1k", sep="/")
 
> writeSpatialShape(HR1kmgrid.spoly, out)
 
> writeSpatialShape(HR1kmgrid.spoly, out)
</geshi>
+
</pre>
  
 
This will create a [http://spatial-analyst.net/DATA/grid_croatia_etrs_laea_1k.zip '''shape file'''] with grid nodes placed exactly on the reference grid. Each grid cell has an unique name, which is abbreviation of the XY coordinates of the origin of the grid. E.g. <tt>4572_2625</tt> corresponds to the grid node <tt>X=4572500</tt>, <tt>Y=2625500</tt>.
 
This will create a [http://spatial-analyst.net/DATA/grid_croatia_etrs_laea_1k.zip '''shape file'''] with grid nodes placed exactly on the reference grid. Each grid cell has an unique name, which is abbreviation of the XY coordinates of the origin of the grid. E.g. <tt>4572_2625</tt> corresponds to the grid node <tt>X=4572500</tt>, <tt>Y=2625500</tt>.
Line 334: Line 334:
 
*Annoni, A. (Edt) 2003. [http://www.ec-gis.org/sdi/publist/pdfs/annoni2005eurgrids.pdf European Reference Grids - EUR Report 21494 EN]. Proceedings of the "European Reference Grids" workshop, Ispra, 27-29 October 2003.
 
*Annoni, A. (Edt) 2003. [http://www.ec-gis.org/sdi/publist/pdfs/annoni2005eurgrids.pdf European Reference Grids - EUR Report 21494 EN]. Proceedings of the "European Reference Grids" workshop, Ispra, 27-29 October 2003.
 
*Lapaine, M. 2001. Topografska kartografija u Hrvatskoj, Geografski horizont, 2, 1-53.
 
*Lapaine, M. 2001. Topografska kartografija u Hrvatskoj, Geografski horizont, 2, 1-53.
 +
*Lapaine, M. 2007. [http://hrcak.srce.hr/file/20088 New Official Map Projection of Croatia - HTRS96/TM]. Kartografija i geoinformacije, Vol. 6 No. izv. / spec.
  
 
----
 
----

Latest revision as of 00:23, 19 November 2018