8

Species’ occurrence records (bei)

8.1 Introduction

A special group of Species Distribution Models (SDMs) focuses on the so-called occurrence-only records —
pure records of locations where a species occurred (Tsoar et al., 2007). Although such point data set can be
considered of interest to geostatistics, standard geostatistical techniques cannot be used to generate (realized)
species’ distributions using occurrence-only data, mainly for two reasons: (1) absence locations are missing
(‘I’s only), so that it is not possible to analyze the data using e.g. indicator geostatistics; and (2) the sampling
is purposive and points are often clustered in both geographical and feature spaces, which typically causes
difficulties during the model estimation.

Spatial statisticians (e.g. Diggle (2003); Bivand et al. (2008)) generally believe that geostatistical tech-
niques are suited only for modeling of features that are inherently continuous (spatial fields); discrete objects
(points, lines, polygons) should be analyzed using point pattern analysis and similar methods. This exercises
tries to bridge this gap. It demonstrates how to combine geostatistical techniques with conceptually different
techniques — point pattern analysis and Niche analysis — to allow prediction of species’ distributions using
regression-kriging. For more info about the theoretical basis for this approach see section 2.6. This chapter is
based on an article published in Ecological Modeling journal (Hengl et al., 2009b).

We will use the data set bei, distributed together with the spatstat! package, and used in school books
on point pattern analysis by Baddeley (2008) and many other authors. This data set consists of a point map
showing observed locations of trees of the species Beilschmiedia pendula Lauraceae. This is only a small part
of the Barro Colorado Island 50 Hectare Plot?> Data set (Panama) that contains about 2 million records —
complete inventory of all plant species and numerous plant and environmental attributes for six time periods
(Leigh et al., 2004).

8.1.1 Preparation of maps
To run the bei.R script, you will first need to load the following packages:

library(spatstat)
library(adehabitat)
library(gstat)
library(splancs)
library(rgdal)
library (RSAGA)

vV V.V V V YV

We load the bei data set directly from R:

'http://spatstat.org
’http://www.stri.org/english/research/facilities/terrestrial/barro_colorado/
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> data(bei)
> str(bei)

List of 5
$ window :List of b
$ type : chr "rectangle"
$ xrange: num [1:2] O 1000
$ yrange: num [1:2] 0 500
$ units :List of 3
..$ singular : chr "metre"
..$ plural : chr "metres"
..$ multiplier: num 1
.- attr(x, "class")= chr "units"

.$ area : num 5e+05
..- attr(x, "class")= chr "owin"
$n : int 3604
$ x : num [1:3604] 11.7 998.9 980.1 986.5 944.1
$y : num [1:3604] 151 430 434 426 415
$ markformat: chr "none"

- attr(*, "class")= chr "ppp"

Fig. 8.1: The bei data set — locations of Beilschmiedia pendula Lauraceae trees, and a 5 m DEM used as environmental
predictor. Viewed from south to north.

This shows locations of individual trees (a total of 3604 trees) observed in a 1000 m by 500 m rectangular
window®. The beginning of the rectangle is at Lat. 9.15125°, Long. -79.8553°. The bei object is of type ppp,
which is the native spatstat format (point pattern data set in the two-dimensional plane). If you would try to
analyze this data set using some geostatistical package, you would soon find out that not much can be done
because this is not even a binary variable.

8.1.2 Auxiliary maps

In addition to the point map a map of elevation and slope gradient is provided in the bea.extra data set:
> str(bei.extra, max.level=1)

List of 4
$ elev :List of 11
.- attr(*, "class")= chr "im"
$ grad :List of 11
.- attr(x, "class")= chr "im"

3What makes this data set especially suitable for this exercise is the fact that the complete population of the trees has been mapped for
the area of interest.
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We can extend the initial list of covariates and attach two more maps that we can derive in SAGA and then
import back into R — the wetness index and vertical distance from the channel network (Fig. 8.2):

grids <- as(bei.extral[[1]], "SpatialGridDataFrame")

names(grids) [1] <- "elev"

grids$grad <- as(bei.extral[[2]], "SpatialGridDataFrame")$v

write.asciigrid(grids["elev"], "dem.asc")

write.asciigrid(grids["grad"], "grad.asc")

Generate the wetness index and vertical distance from the channel network:

rsaga.esri.to.sgrd(in.grids="dem.asc", out.sgrds="dem.sgrd", in.path=getwd())

Filter the spurious sinks:

rsaga.geoprocessor(lib="ta_preprocessor", module=2,
param=list (DEM="dem.sgrd", RESULT="dem_f.sgrd"))

rsaga.geoprocessor{(lib="ta_hydrology", module=15, param=list(DEM="dem_f.sgrd",
C="catharea.sgrd", GN="catchslope.sgrd", CS="modcatharea.sgrd", SB="twi.sgrd", T=10))

rsaga.geoprocessor(lib="ta_channels", module=0, param=1ist(ELEVATION="dem.sgrd",
CHNLNTWRK="chnlntwrk.sgrd", CHNLROUTE="channel_route.sgrd", SHAPES='"channels.shp",
INIT_GRID="dem_f.sgrd", DIV_CELLS=10, MINLEN=30))

rsaga.geoprocessor(lib="ta_channels", module=3, param=1ist(ELEVATION="dem.sgrd",
CHANNELS="chnlntwrk.sgrd", ALTITUDE="achan.sgrd", THRESHOLD=0.1, NOUNDERGROUND=TRUE))

rsaga.sgrd.to.esri(in.sgrds=c("twi.sgrd","achan.sgrd"),
out.grids=c("twi.asc","achan.asc"), prec=1, out.path=getwd())

grids$achan <- readGDAL("achan.asc")$bandl

grids$twi <- readGDAL("twi.asc")$bandl
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Fig. 8.2: Auxiliary (environmental) maps used to explain species’ distribution: Elevation (elev), Slope in % (grad),
Topographic Wetness Index (twi) and Altitude above channel network in m (achan) derived in SAGA GIS.

where twi.sgrd is the Topographic Wetness Index, and achan.sgrd is the Altitude above channel network.
For more info about the SAGA syntax, see section 3.1.2 or refer to Conrad (2007).

We will now implement all steps described in §2.6 to predict the spatial density of trees over the area of
interest (M =20301 grid nodes). To test our algorithm we will use a 20% sub-sample of the original population
and then validate the accuracy of our technique versus the whole population.
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8.2 Species distribution modeling
8.2.1 Kernel density estimation

We start by estimating a suitable bandwidth size for kernel density estimation (Eq.2.6.3). For this we use the
method of Berman and Diggle (1989), as described in Bivand et al. (2008, p.166-167), that looks for the
smallest Mean Square Error (MSE) of a kernel estimator:

gridbbox <- as.points(list(x=c(grids@bbox[1,1], grids@bbox[1,2], grids@bbox[1,2],

grids@bbox[1,1]), y=c(grids@bbox[2,1], grids@bbox[2,1], grids@bbox[2,2], grids@bbox[2,2])))

bw <- mserw$h[which.min(mserw$mse)]

>
+
> mserw <- mse2d(as.points(coordinates(bei.pnt)), gridbbox, 100, 10%bei.pixsize)
>
> plot(mserw$h,mserw$mse, type="1")
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Fig. 8.3: Selection of the optimal bandwidth using the method of Berman and Diggle (1989).

This shows that the optimal bandwidth size is about 4 m. But since our grid cell size is 5 m this bandwidth
is not really suited for this scale of work. Based on the plot from above we only know that we should not use a
bandwidth finer/smaller than 5 m; coarser bandwidths are all plausible. We can also consider the least squares
cross validation method to select the bandwidth size using the method of Worton (1995), as implemented in
the adehabitat package:

> bei.pnt <- data.frame(x=bei$x, y=bei$y, no=rep(1l, length(bei$x)))

> coordinates(bei.pnt) <- ~ x+y

> dem.asc <- import.asc("dem.asc")

> bei.kdens <- kernelUD(xy=as.data.frame(bei.pnt@coords), id=NULL, h="LSCV", grid=dem.asc)

Warning message:
In kernelUD(xy = as.data.frame(bei.pnt@coords), id = NULL, h = "LSCV",
The algorithm did not converge within the specified range of hlim: try to increase it

This does not converge either®, hence we need to set the bandwidth size using some ad hoc method. As a
rule of thumb we can start by estimating the smallest suitable range as the average size of block:

p = v/ area(Byg)/N (8.2.1)

and then set the bandwidth size at two times this value. There are 3605 trees () in the area of size
507,525 m?, which means that we could use a bandwidth of 24 m (H):

4This is unfortunately a very common problem with many real point patterns.
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> bei.pixsize <- sqrt(areaSpatialGrid(grids)/length(bei$x))
> bei.pixsize

[1] 11.86687

We next derive a relative kernel density map using the standard methods in the spatstat package (Eq.2.6.7).
The resulting density map is shown in Fig. 8.4:

> bei.ppp <- ppp(coordinates(bei.pnt)[,1], coordinates(bei.pnt)[,2],
+ marks=bei.pnt$no, window=as(grids[1], "owin"))

# reformat the point pattern so it fits the grids:

> summary (bei.ppp)

Marked planar point pattern: 3604 points
Average intensity 0.0071 points per square unit
marks are numeric, of type 'double'
Summary :
Min. 1st Qu. Median Mean 3rd Qu. Max.
1 1 1 1 1 1

Window: binary image mask

101 x 201 pixel array (ny, nx)

pixel size: 5 by 5 units

enclosing rectangle: [-2.5, 1002.5] x [-2.5, 502.5] units
Window area = 507525 square units

bei.dens <- density(bei.ppp, sigma=2x*bei.pixsize)

grids$dens <- as(bei.dens, "SpatialGridDataFrame")$v

relative density:

grids$densr <- grids$dens/(max(grids$dens, na.rm=T))

bei.pnt.plot <- list("sp.points", bei.pnt, pch="+", cex=.7, col="black")

plt.densl <- spplot{(grids["densr"], scales=list(draw=F), at=seq(0,1,0.025),
col.regions=grey(rev(seq(0,1,0.025))), sp.layout=bei.pnt.plot)

+ V V V H#% V V

Whole population 20% sample
— 1".‘ - 1.0
e - 06
b

o e 0.4
:‘.'. -‘;":@ et 02

.".."-_: Py 5 e

. " L et
S 0.0

Fig. 8.4: Relative intensity estimated for the original bei data set (left), and its 20% sub-sample (right). In both cases the
same bandwidth was used: H=24 m.

If we randomly subset the original occurrence locations and then re-calculate the relative densities, we
notice that the spatial pattern of the two maps does not differ significantly, and neither do their histograms:

Randomly subset points:

sel <- runif(length(bei.pnt$no))<0.2

bei.sub.pnt <- bei.pnt[sel,]

bei.sub <- ppp(coordinates(bei.sub.pnt)[,1], coordinates(bei.sub.pnt)[,2],
marks=bei.sub.pnt$no, window=as(grids[1], "owin"))

plot(bei.sub)

Derive kernel density:

H H + V V V H®
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bei.sub.dens <- density(bei.sub, sigma=2+*bei.pixsize)

grids$sub.dens <- as(bei.sub.dens, "SpatialGridDataFrame")$v

grids$sub.densr <- grids$sub.dens/(max(grids$sub.dens, na.rm=T))

Plot the second map:

bei.sub.pnt.plot <- list("sp.points", bei.sub.pnt, pch="+", cex=.7, col="black")

plt.dens2 <- spplot(grids["sub.densr"], scales=list(draw=F), at=seq(0,1,0.025),
col.regions=grey(rev(seq(0,1,0.025))), sp.layout=bei.sub.pnt.plot)

print(plt.densl, split=c(1,1,1,2), more=T)

print(plt.dens2, split=c(1,2,1,2), more=T)

VV + VYV HV VYV

then check if the two maps follow the same distribution:

> t.test(grids$sub.densr, grids$densr)
> t.test(grids$sub.densr, grids$densr)

Welch Two Sample t-test

data: grids$sub.densr and grids$densr
t = -6.5351, df = 40567.5, p-value
= 6.432e-11
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-0.010186940 -0.005486209
sample estimates:
mean of x mean of y
0.1125212 0.1203578

which confirms that the two maps basically follow the same distribution. This supports our assumption that
the relative density map (Eq.2.6.7) can be indeed reproduced also from a representative sample (n=721).

We proceed with preparing the environmental predictors and testing their correlation with the density val-
ues. We can extend the original single auxiliary map (DEM) by adding some hydrological parameters: slope, to-
pographic wetness index and altitude above channel network. We want to attach the SpatialGridDataFrame
class maps to the original im class bei.extra, which means that we need to ‘coerce’ the objects to format of
interest:

> bei.extra$twi <- as.im(as.image.SpatialGridDataFrame(grids["twi"]))
> bei.extra$achan <- as.im(as.image.SpatialGridDataFrame(grids["achan"]))
> plot.im(bei.extra, col=grey(rev(seq(0,1,0.025))))

which will produce the map shown in Fig. 8.2. The result of fitting a non-stationary point process with a
log-linear density using the ppm method of spatstat shows that density is negatively correlated with wetness
index, and positively correlated with all other predictors (Baddeley, 2008):

> bei.sub.ppm <- ppm(bei.sub, ~ elevtgradt+twitachan, covariates=list(elev=bei.extra$elev,
+ grad=bei.extra$grad, twi=bei.extra$twi, achan=bei.extra$achan))
> summary(bei.sub.ppm)

Point process model

fitted by maximum pseudolikelihood (Berman-Turner approximation)
Call:

ppm(Q = bei.sub, trend = ~ elev + grad + twi + achan,

covariates = list(elev = bei.extra$elev,...

Edge correction: "border"

FITTED MODEL:
Nonstationary Poisson process

---- Intensity: ----

Trend formula: ~ elev + grad + twi + achan
Model involves external covariates
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Fitted coefficients for trend formula:
(Intercept) elev grad twi achan
-9.00309481 0.01675857 4.24494406 -0.07240637 0.03017035

We can actually use this model to predict the species density by using the generic predict method: 1

> bei.ppm.trend <- predict(bei.sub.ppm, type="trend", ngrid=c(grids@grid@cells.dim[2],
+ grids@grid@cells.dim[1]), window=as(grids[1], "owin"))

> plot(bei.ppm.trend)

> plot(bei.sub, add=T, pch=".")

Trend model (density) Habitat Suitability Index (0-100%)

0.005
0.004
0.003
0.002

0.001

0.000

Fig. 8.5: Trend model "ppm" predicted using elevation, slope, topographic wetness index and altitude above channel
network as environmental covariates (left); Habitat Suitability Index (0-100%) derived in the adehabitat package using
the same list of covariates (right).

Visually (Fig. 8.5), we can see that the predicted trend seriously misses some hot-spots i.e. clusters of points.
It seems that using point pattern analysis techniques to map (realized) species’ distribution with covariates is s
of limited use. A comparison between the Akaike Information Criterion (AIC) for a model without predictors 4
and with predictors shows that there is a slight gain in using the covariates to predict the spatial density: 5

> fitnull <- ppm(bei.sub, ~ 1)
> AIC(fitnull)

[1] 10496.56

> AIC(bei.sub.ppm) # this is a slightly better model

[1] 10289.79

Just for a comparison, we can also fit a GLM model® using all grid nodes: 6
> bei.ppp.lm <- glm(sub.densr ~ grad+elev+twitachan, grids@data, family=poisson())

There were 50 or more warnings (use warnings() to see the first 50)

> summary (bei.ppp.1lm)

This shows a similar picture: the best predictor of the density is TWI. 7

5We need to use the log as the link function because the density values are heavily skewed.
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8.2.2 Environmental Niche analysis

We proceed with the Environmental Niche Factor Analysis (Hirzel and Guisan, 2002), as implemented in the
adehabitat® package (Calenge, 2007). Our objective is to derive the Habitat Suitability Index (0-100%) which
basically shows potential spreading of a species in the feature space (environmental preference). We need to
prepare the maps in the adehabitat native format:

> beidata <- data2enfa(as.kasc(list(dem=import.asc("dem.asc"), grad=import.asc("grad.asc"),
+ twi=import.asc("twi.asc"), achan=import.asc("achan.asc"))), bei.sub.pnt@coords)

# run ENFA and make predictions of habitat suitability index:

> enfa.bei <- enfa(dudi.pca(beidata$tab, scannf=FALSE), beidata$pr, scannf=FALSE, nf=2)

Warning message:

In predict.enfa(enfa.bei, beidata$index, beidata$attr)
the enfa is not mathematically optimal for prediction:

please consider the madifa instead

bei.dist <- predict(enfa.bei, beidata$index, beidata$attr)

grids$bei.dist <- as.SpatialGridDataFrame.im(asc2im(bei.dist))$v

Convert to 0-100 scale:

sum.dist <- summary(grids$bei.dist)

grids$rankv <- rank(grids$bei.dist, ties.method="first")

grids$hsit <- ifelse(grids$bei.dist<sum.dist[["Median"]],
(1-grids$rankv/max(grids$rankv))*100, (1l-grids$rankv/max(grids$rankv))=*100)

grids$hsi <- 100*round((grids$hsit-min(grids$hsit, na.rm=T))/(max(grids$hsit,
na.rm=T)-min(grids$hsit, na.rm=T)), 3)

plt.HSI <- spplot(grids["hsi"], at=seq(0,100,2.5), col.regions=bpy.colors())

VvV + %V + V VYV H®HV YV

The resulting HSI map shows that this species generally avoids the areas of high wetness index, i.e. it
prefers ridges/dry positions (Fig. 8.5, right). This spatial pattern is now more distinct (compare with the trend
model in Fig. 8.5, left). This demonstrates the power of ENFA, which is in this case more suited for analysis of
the occurrence-only locations than regression analysis and/or the point pattern analysis.

8.2.3 Simulation of pseudo-absences

In the next section we will use the results of Niche analysis to generate pseudo-absences. Recall (§2.6) that
insertion of pseudo-absences is an important step because it will allow us to fit regression models. We use
two maps as weight maps to randomize allocation of the pseudo-absences: the geographical distance from the
occurrence locations and habitat suitability index. We first derive the buffer distance to the points in SAGA
GIS:

first the buffer distance:

rsaga.geoprocessor(lib="grid_gridding", module=3, param=1ist(GRID="bei_buffer.sgrd",
INPUT="bei_sub.shp", FIELD=0, LINE_TYPE=0, USER_CELL_SIZE=grids@grid@cellsize[[1]],
USER_X_EXTENT_MIN=grids@bbox[1,1]+grids@grid@cellsize[[1]]/2,
USER_X_EXTENT_MAX=grids@bbox[1,2]-grids@grid@cellsize[[1]]/2,
USER_Y_EXTENT_MIN=grids@bbox[2,1]+grids@grid@cellsize[[1]]/2,
USER_Y_EXTENT_MAX=grids@bbox[2,2]-grids@grid@cellsize[[1]]/2))

now extract a buffer distance map and load it back into R:

(the parameters DIST and IVAL are estimated based on the grid properties)

rsaga.geoprocessor(lib="grid_tools", module=10, param=1ist(SOURCE="bei_buffer.sgrd",
DISTANCE="bei_dist.sgrd", ALLOC="bei_alloc.sgrd", BUFFER="bei_bdist.sgrd",
DIST=sqrt (areaSpatialGrid(grids))/3, IVAL=grids@grid@cellsize[[1]]))

rsaga.sgrd.to.esri(in.sgrds="bei_dist.sgrd", out.grids="bei_dist.asc",
out.path=getwd(), prec=1)

grids$buffer <- readGDAL("bei_dist.asc")$bandl

relative distance:

grids$bufferr <- grids$buffer/max(grids$buffer, na.rm=T)

V& V +V ++VHEH+++ + + V H

Shttp://cran.r-project.org/web/packages/adehabitat/
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By combining HSI and buffer map around the occurrence locations (Eq.2.6.11) we can generate the same
amount of pseudo-absence locations:

# weight map:

> grids$weight <- ((100*grids$bufferr+(100-grids$hsi))/2)~2

> dens.weight <- as.im(as.image.SpatialGridDataFrame(grids["weight"]))
> bei.absences <- rpoint(length(bei.sub.pnt$no), f=dens.weight)

> bei.absences <- data.frame(x=bei.absences$x, y=bei.absences$y,

+ no=rep(0, length(bei.sub.pnt$no)))

> coordinates(bei.absences) <- ~ x+y

# combine the occurences and absences:

> bei.all <- rbind(bei.sub.pnt["no"], bei.absences["no"])

One realization of the simulated pseudo-absences (overlaid over the weight map) can be seen in Fig. 8.10a.
Correct insertion of pseudo-absences is crucial for the success of regression analysis (see Chefaoui and Lobo
(2008) for discussion), hence it also a good idea to visually validate each simulated pseudo-absence and
remove ‘suspicious’ candidates.

8.2.4 Regression analysis and variogram modeling

Before we run any regression analysis we will convert the original four predictors to principal components (in
order to reduce their dimensions and the multicolinearity effect):

# derive PCs from the original predictors:

> pc.grids <- prcomp( ~ gradtelev+twitachan, scale=TRUE, grids)
> pc.comps <- as.data.frame(pc.grids$x)

> pointgrids <- as(grids, "SpatialPointsDataFrame")

> pc.comps$X <- coordinates(pointgrids)[,1]

> pc.comps$Y <- coordinates(pointgrids)[,2]

> coordinates(pc.comps) <- ~ X+Y

> gridded(pc.comps) <- TRUE

> pc.comps <- as(pc.comps, "SpatialGridDataFrame')

> spplot(pc.comps, c("PC1","PC2","PC3","PC4"),

+ col.regions=grey(c(rep(0,10),seq(0,1,0.05) ,rep(1,10))), cuts=40)

Fig. 8.6: Principal Components generated using the original predictors.
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Fig. 8.7: Correlation plot PC1/PC2 versus the logit-transformed density.

which shows that the first component reflects pattern in the twi and grad; the third component reflects
pattern in achan (Fig. 8.6). Next, we can overlay the predictors and the estimated intensities at occurrence
and absence locations:

bei.ov2 <- overlay(pc.comps, bei.all)

bei.ov2$no <- bei.all$no

convert the original values to logits:

bei.ov2$log.densr <- log((bei.ov2$densr+0.001)/(1-(bei.ov2$densr-0.001)))
summary (bei.ov2$log.densr)

vV V ®# V V

Min. 1st Qu. Median Mean 3rd Qu. Max.
-6.908 -3.378 -1.882 -2.297 -1.197 4.253

> var(bei.ov2$log.densr, na.rm=T)
[1] 3.666165

The benefit of converting the target variable to logits and the predictors to PCs is that the relationship
between the two is now close to linear (Fig. 8.7):

> scatter.smooth(bei.ov2$PCl, bei.ov2$log.densr, span=19/20, col='"grey",
+ xlab="PC1", ylab="logit(density)")

> 1m3.bei <- 1lm(log.densr ~ PC1+PC2+PC3+PC4, bei.ov2@data)

> summary(1lm3.bei)

Call:
Im(formula = log.densr ~ PC1 + PC2 + PC3 + PC4, data = bei.ov2@data)

Residuals:
Min 1Q Median 3Q Max
-4.09463 -0.98535 0.04709 0.99504 5.52267

Coefficients:
Estimate Std. Error t value

(Intercept) -2.35896 0.04247 -55.546

PC1 -0.40174 0.02864 -14.025

PC2 -0.79147 0.03684 -21.482

PC3 -0.34820 0.04629 -7.522
0

pPC4 0.34360 .07423  4.629
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Fig. 8.8: Correlation plot HSI vs relative density with occurrence-only locations (left) and after the insertion of the pseudo-
absence locations (right). Note that the pseudo-absences ensure equal spreading around the feature space (below).

The correlation between the HSI and density is now clearer and the spreading of the points around the HSI
feature space is symmetric:

# Glue occurrences and pseudo-absences:

> bei.all <- rbind(bei.sub.pnt["no"], bei.absences["no"])

> scatter.smooth(bei.ov2$hsi[bei.ov2$no>0], bei.ov2$densr[bei.ov2$no>0], span=19/20,
+  col="darkgrey", pch=21, cex=.5, xlab="HSI", ylab="density (occurrences-only)")

> scatter.smooth(bei.ov2$hsi, bei.ov2$densr, span=19/20, col="darkgrey", pch=21,

+ cex=.5, xlab="HSI", ylab="density (+ absences)")

> hist(bei.ov2$hsil[bei.ov2$no>0], col="grey", freq=F, breaks=30,

+  x1ab="HSI (occurrences)", ylab="frequency", main="")

> hist(bei.ov2$hsi, col="grey", freq=F, breaks=30,

+  xlab="HSI (occurrences + absences)", ylab="frequency", main="")
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Fig. 8.9: Variogram models for residuals fitted in gstat using occurrence-absence locations: (left) density values (logits),
and (right) probability values.

which produces the plot shown in Fig. 8.8 (right). Consequently, the model fitting is more successful: the
adjusted R-square fitted using the four environmental predictors jumped from 0.07 to 0.34. This demonstrates
the benefits of inserting the pseudo-absence locations using a feature-space design model. It can be further
demonstrated that, if we would randomly insert the pseudo-absences, the model would not improve or would
become even noisier.

We proceed with analyzing the point data set indicated in Fig. 8.10b using standard geostatistical tools. We
can fit a variogram for the residuals and then predict relative densities using regression-kriging as implemented
in the gstat package. For a comparison, we also fit a variogram for the occurrence-absence data but using the
residuals of the GLM modeling with the logit link function, i.e. using the 0/1 values (Fig. 8.9):

> glm.bei <- glm(no ~ PC1+PC2+PC3+PC4, bei.ov2@data, family=binomial(})

We can now deal with the residuals by using some standard geostatistical techniques. To fit a variogram
for the residuals, we run:

> res.var <- variogram(residuals(lm3.bei) ~ 1, bei.ov2)

> res.vgm <- fit.variogram(res.var, vgm(nugget=0, model="Exp",

+  range=sqrt(areaSpatialGrid(grids))/3, psill=var(residuals(1m3.bei), na.rm=T)))
> plot(res.var, res.vgm, plot.nu=T, pch="+", main="Intensity residuals")

As with any indicator variable, the variogram of the binomial GLM will show higher nugget and less distinct
auto-correlation than the variogram for the (continuous) density values (Fig. 8.9). This is also because the
residuals of the density values will still reflect kernel smoothing, especially if the predictors explain only a
small part of variation in the density values.

8.3 Final predictions: regression-kriging
We can finally generate predictions using a regression-kriging model”:

regression part:

vt.gt <- gstat(id=c("dens"), formula=log.densr ~ PC1+PC2+PC3+PC4, data=bei.ov2)

residuals:

vt.gr <- gstat(id=c("dens"), formula=residuals(1lm3.bei) ~ 1,
data=bei.ov2, model=res.vgm)

vt.reg <- predict.gstat(vt.gt, pc.comps) # regression part

vt.ok <- predict.gstat(vt.gr, pc.comps, nmax=80, beta=1, BLUE=FALSE,
debug.level=-1)

+ VV + V & V H#

7Residuals and the deterministic part are predicted separately.
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# Back-transform:
> vt.reg$dens <- exp(vt.reg$dens.pred+vt.ok$dens.pred)/
+ (1+exp(vt.reg$dens.pred+vt.ok$dens.pred))
> vt.reg$densA <- vt.reg$dens * length(bei.pnt$no)/sum(vt.reg$dens, na.rm=F)
> sum(vt.reg$densA) # check if the sum of counts equals the population!
[1] 3604
> bei$n
[1] 3604

To predict the probability of species’ occurrence we run similar steps:

bin.reg <- predict(glm.bei, newdata=pc.comps, type="response", na.action=na.omit)
bin.gr <- gstat(id=c("no"), formula=glm.bei$residual ~ 1, data=bei.ov2, model=res.bvgm)
bin.ok <- predict.gstat(bin.gr, pc.comps, nmax=80, beta=1, BLUE=FALSE, debug.level=-1)
bin.ok$rk.bin <- bin.reg$fit + bin.ok$no.pred

bin.ok$rk.binf <- ifelse(bin.ok$rk.bin<0, 0, ifelse(bin.ok$rk.bin>1, 1, bin.ok$rk.bin))

vV V V V V

The resulting map of density predicted using regression-kriging (shown in Fig. 8.10c) is indeed a hybrid
map that reflects kernel smoothing (hot spots) and environmental patterns, thus it is a map richer in content
than the pure density map estimated using kernel smoothing only (Figs. 8.4), or the Habitat Suitability Index
(Fig. 8.5, right). Note also that, although the GLM-kriging with a binomial link function (Fig. 8.10d) is statisti-
cally a more straight forward procedure (it is completely independent from point pattern analysis), its output
is limited in content because it also fails to represent some hot-spots. GLM-kriging of 0/1 values in fact only
shows the areas where a species’ is likely to occur, without any estimation of how dense will the population
be. Another advantage of using the occurrences+absences with attached density values is that we are able not
only to generate predictions, but also to generate geostatistical simulations, map the model uncertainty, and
run all other common geostatistical analysis steps.

relative

'_‘ -1 intensity
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0.27
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Fig. 8.10: Spatial prediction of species distribution using the bei data set (20% sub-sample): (a) the weight map and
the randomly generated pseudo-absences using the Eq.(2.6.11); (b) input point map of relative intensities (includes the
simulated pseudo-absences); (c) the final predictions of the overall density produced using regression-kriging (showing
number of individuals per grid cell as estimated using Eq.(2.6.8); and (d) predictions using a binomial GLM.

In the last step of this exercises we want to validate the model performance using the ten-fold cross vali-
dation (as implemented in the gstat package):
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vt.cross <- krige.cv(log.densr ~ PC1+PC2+PC3+PC4, bei.ov2, res.vgm, nfold=10)
10-fold cross-validation

MPE, ideally O (unbiased estimate)

mean (vt .cross$residual)

vV # # Vv

[1] -0.004776853

# MSPE, ideally small
> var(vt.cross$residual, na.rm=T)

[1] 0.01412567

# portion of variation explained by the model:
> 1-var(vt.cross$residual, na.rm=T)/var(bei.ov2$log.densr, na.rm=T)

[1] 0.9961782

which shows that the model is highly precise — it ex-
plains over 99% of the variance in the training sam-
ples. Further comparison between the map shown in
Fig. 8.10c and Fig. 8.4 shows that with 20% of sam-
ples and four environmental predictors we are able
to explain 96% of the pattern in the original den-
sity map (R-square=0.96). Fig. 8.11 indeed confirms
that this estimator is unbiased. These are rather high
values® and you will possibly not expect to achieve
such high accuracy with your own data.

One last point: although it seems from this exer-
cise that we are recycling auxiliary maps and some
analysis techniques (we use auxiliary maps both
to generate the pseudo-absences and make predic-
tions), we in fact use the HSI map to generate the
pseudo-absences, and the original predictors to run
predictions, which do not necessarily need to reflect Original intensity
the same features. Relative densities do not have to
be directly correlated with the HSI, although a signif- Fig. 8.11: Evaluation of the mapping accuracy for the map
icant correlation will typically be anticipated. Like- shown in Fig. 8.10c versus the original mapped density using
wise, we use kernel smoother to estimate the intensi- 100% of samples (Fig. 8.4).
ties, but we then fit a variogram, which is controlled
by the amount of smoothing, i.e. value of the bandwidth, hence the variogram will often show artificially
smooth shape (as shown in Fig. 8.9). The only way to avoid this problem is to estimate the bandwidth using
some objective technique (which we failed to achieve in this example), or to scale the variogram fitted for the
indicator variable (Fig. 8.9; right) to the density values scale.

Predicted counts
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B
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8.4 Niche analysis using MaxEnt

In section §8.2.2 we have derived Habitat Suitability Index map using the adehabitat package. An alternative
approach to estimate species ecological preference is by using the MaxEnt package (Phillips and Dudik, 2008),
which is by many considered to be the most robust approach to species distribution modeling (see §2.6). For
example, MaxEnt can work with both continuous and categorical predictors and has very extensive and flexible
possibilities for analysis of biodiversity data. With MaxEnt, we can request cross-validation and investigate
which predictors are most significant, which is not as simple with adehabitat.

MaxEnt is not available as an R package, therefore you will first need to request and download it from the
MaxEnt homepage®. The complete algorithm is contained in a single maxent . jar (Java ARchive) file, which
is basically a zipped Java (class file) code!®. Then, define location of MaxEnt in the R session:

8This is an ideal data set where all individual trees have been mapped and the species’ distribution is systematic.
%www.cs.princeton.edu/~schapire/maxent/
100bviously, before you can run MaxEnt, you will need to install Java software on your machine.


www.cs.princeton.edu/~schapire/maxent/
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V V.V V V V ®

=) = |Opx
Samples Environmental layers
Fi\e!C'\BOOK\BCI\MESampIES\DEi CSV ” Browse | Directory/File | C\BOOK\BCI\grids || Browse
|v] achan Continuous -
[v] dem Continuous -
[¥] bei

Maximum Entropy Species Distribution Modeling

(i) bei: Gain is 0,166499

[1 Line Create response curves [ |
[ Make pictures of predictions [ |
[ Pro Do jackknife to measure variable importance [_|
O Dutput format | Logistic hd
Output file type |.asc -
T Hi
Output directory | C\BOOK\BCI\MEout Browse
[v] Auto features Projection layers d\rer.toryrlile| Browse
| settings | Help

Fig. 8.12: Extraction of Habitat Suitability Index using MaxEnt.

Location of MaxEnt and directories:

Sys.chmod(getwd(), mode="7777") # write permissions

MaxEnt <- "C:\\MaxEnt\\maxent.jar"

dir.create(path="MEout"); dir.create(path="MEsamples")

MaxEnt.layers <- paste(gsub("/", "\\\\", getwd()), "\\grids", sep="")
MaxEnt.out <- paste(gsub("/", "\\\\", getwd()), "\\MEout", sep="")
MaxEnt.samples <- paste(gsub("/", "\\\\", getwd()), "\\MEsamples", sep="")

where MEout is the directory where MaxEnt will write the results of analysis (plots, grids and table data),
and MEsamples is a directory containing the input samples. Next, copy the grids of interest to some working
directory e.g. /grids:

vV + V V V V V

Vv Vv

dir.create(path="grids")
for(j in c("dem.asc", '"grad.asc", "twi.asc", "achan.asc")) {
file.copy(j, paste("grids/", j, sep=""), overwrite=TRUE)
}
asc.list <- list.files(paste(getwd(), "/grids", sep=""),
pattern="\\.asc$", recursive=TRUE, full=FALSE)
asc.list

[1] "achan.asc" "dem.asc"  "twi.asc"
Before we can run MaxEnt, we still need to prepare the occurrence records in the required format (.csv):

Write records to a csv file (species, longitude, latitude):
bei.csv <- data.frame(sp=rep("bei", bei$n), gx=bei$x, gy=beily)
write.csv(bei.csv[,c("sp","gx","gy")], "MEsamples/bei.csv", quote=FALSE, row.names=FALSE)

We can now run MaxEnt using the system command in R:

Run a batch process (opens a process window):

system(command=paste("java -mx1000m -jar ", MaxEnt, " environmentallayers=",
MaxEnt.layers, " samplesfile=", MaxEnt.samples, "\\bei.csv", " outputdirectory=",
MaxEnt.out, " randomtestpoints=25 maximumiterations=100 redoifexists
autorun nowarnings notooltips", sep=""))
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where randomtestpoints=25 will randomly take 25% points for cross-validation, redoifexists will replace
the existing files, autorun, nowarnings and notooltips will force MaxEnt to run without waiting. For more
information about MaxEnt batch mode flags, look in the Help file.

After the analysis, open the /MEout directory and browse the generated files. We are most interested in
two files: bei.asc — the Habitat Suitability Index map (0-1), and bei.html — the complete report from the
analysis. Optionally, you can also read the result of analysis directly to R by using the XML package:

> library(XML)

> bei.html <- htmlTreeParse("MEout/bei.html")
# summary result:
>
+

bei.html[[3]T[[1]1][[2]1]1[[65]1]1; bei.htm1[[3]]1[[11][[2]1]1[[52]1];
bei.html[[3]]1[[1]1]1C[2]1]1C[56]1]; bei.html[[3]1]1C[1]1I1C[21]1[[67]]

12703 points used to determine the Maxent distribution
(background points and presence points).

Regularized training gain is 0.167, training AUC is 0.712,
unregularized training gain is 0.193.

Test AUC is 0.704, standard deviation is 0.008

Environmental layers used (all continuous): achan dem grad twi

which shows that AUC (Area Under Curve) statistics for cross-validation locations is 0.704 (maximum AUC is
1.0). Note that the HSI map derived using ENFA and MaxEnt are in fact very similar. MaxEnt also shows
the most important predictors that can be used to explain distribution of bei trees are twi (40.6%) and dem
(32.5%).

Self-study exercises:
(1.) Delineate all areas with >50 trees per ha. How big is this area in ha?

(2.) Randomly allocate 300 points and derive an HSI map using these points. Is there a significant difference
between the map you derived and the map shown in Fig. 8.5 (right)?

(3.) Derive additional four DEM parameters in SAGA: two based on the lightning module and two based
on the residual analysis (see p.230) and repeat the regression modeling explained in §8.2.4 using the
extended list of predictors. Which predictor is now the most significant?

(4.) Produce a factor type map showing: (1) actual spreading (predicted probability exceeds 0.5), (2) poten-
tial spreading (HSI> 50%), and (3) no spreading using the original data set.

(5.) Run 4-6 geostatistical simulations using the model fitted in §8.2.4. Where is the distribution of the
species most variable? Relate to both geographical and state space.

(6.) Try to allocate the pseudo-absences (section 8.2.3) using even higher spreading at the edges of the
feature space. Determine the optimal spreading based on the improvement in the R-square.

(7.) Compare HST maps derived in adehabitat and MaxEnt (using the same inputs) and derive correlation
coefficient between the two maps.

Further reading:
% Baddeley, A., 2008. Analysing spatial point patterns in R. CSIRO, Canberra, Australia.

% Calenge, C., 2007. Exploring Habitat Selection by Wildlife with adehabitat. Journal of Statistical Soft-
ware 22(6), 2-19.

% Diggle, P J., 2003. Statistical Analysis of Spatial Point Patterns, 2nd Edition. Arnold Publishers.

% Hirzel A. H., Hausser J., Chessel D., Perrin N., 2002. Ecological-niche factor analysis: How to compute
habitat-suitability maps without absence data? Ecology, 83, 2027-2036.
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% Pebesma, E. J., Duin, R. N. M., Burrough, PA., 2005. Mapping sea bird densities over the North Sea:
spatially aggregated estimates and temporal changes. Environmetrics 16(6), 573-587.

% Phillips, S. J., Dudik, M., 2008. Modeling of species distributions with Maxent: new extensions and a
comprehensive evaluation. Ecography, 31(2): 161-175.

% Tsoar, A., Allouche, O., Steinitz, O., Rotem, D., Kadmon, R., 2007. A comparative evaluation of presence-
only methods for modeling species distribution. Diversity & Distributions 13(9), 397-405.
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