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Regression-kriging 2

As we saw in the previous chapter, there are many geostatistical techniques that can be used to map environ- 3

mental variables. In reality, we always try to go for the most flexible, most comprehensive and the most robust 4

technique (preferably implemented in a software with an user-friendly GUI). In fact, many (geo)statisticians 5

believe that there is only one Best Linear Unbiased Prediction (BLUP) model for spatial data, from which all 6

other (linear) techniques can be derived (Gotway and Stroup, 1997; Stein, 1999; Christensen, 2001). As we 7

will see in this chapter, one such generic mapping technique is regression-kriging. All other techniques men- 8

tioned previously — ordinary kriging, environmental correlation, averaging of values per polygons or inverse 9

distance interpolation — can be seen as special cases of RK. 10

2.1 The Best Linear Unbiased Predictor of spatial data 11

Matheron (1969) proposed that a value of a target variable at some location can be modeled as a sum of the 12

deterministic and stochastic components: 13

Z(s) = m(s) + ε′(s) + ε′′ (2.1.1)

14

Fig. 2.1: A schematic example of the regression-kriging concept shown using a cross-section.

27
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which he termed the universal model of spatial variation. We have seen in the previous sections (§1.3.1 and1

§1.3.2) that both deterministic and stochastic components of spatial variation can be modeled separately. By2

combining the two approaches, we obtain:3

ẑ(s0) = m̂(s0) + ê(s0)

=
p
∑

k=0

β̂k · qk(s0) +
n
∑

i=1

λi · e(si)
(2.1.2)

4

where m̂(s0) is the fitted deterministic part, ê(s0) is the interpolated residual, β̂k are estimated deterministic5

model coefficients (β̂0 is the estimated intercept), λi are kriging weights determined by the spatial dependence6

structure of the residual and where e(si) is the residual at location si . The regression coefficients β̂k can be7

estimated from the sample by some fitting method, e.g. ordinary least squares (OLS) or, optimally, using8

Generalized Least Squares (Cressie, 1993, p.166):9

β̂GLS =
�

qT ·C−1 · q
�−1
· qT ·C−1 · z (2.1.3)

10

where β̂GLS is the vector of estimated regression coefficients, C is the covariance matrix of the residuals, q is11

a matrix of predictors at the sampling locations and z is the vector of measured values of the target variable.12

The GLS estimation of regression coefficients is, in fact, a special case of geographically weighted regression13

(compare with Eq.1.3.20). In this case, the weights are determined objectively to account for the spatial14

auto-correlation between the residuals.15

Once the deterministic part of variation has been estimated, the residual can be interpolated with kriging16

and added to the estimated trend (Fig. 2.1). Estimation of the residuals and their variogram model is an iter-17

ative process: first the deterministic part of variation is estimated using ordinary least squares (OLS), then the18

covariance function of the residuals is used to obtain the GLS coefficients. Next, these are used to re-compute19

the residuals, from which an updated covariance function is computed, and so on (Schabenberger and Got-20

way, 2004, p.286). Although this is recommended as the proper procedure by many geostatisticians, Kitanidis21

(1994) showed that use of the covariance function derived from the OLS residuals (i.e. a single iteration) is22

often satisfactory, because it is not different enough from the function derived after several iterations; i.e. it23

does not affect the final predictions much. Minasny and McBratney (2007) reported similar results: it is often24

more important to use more useful and higher quality data than to use more sophisticated statistical methods.25

In some situations1 however, the model needs to be fitted using the most sophisticated technique to avoid26

making biased predictions.27

In matrix notation, regression-kriging is commonly written as (Christensen, 2001, p.277):28

ẑRK(s0) = qT
0 · β̂GLS +λ

T
0 · (z− q · β̂GLS) (2.1.4)

29

where ẑ(s0) is the predicted value at location s0, q0 is the vector of p+ 1 predictors and λ0 is the vector of n30

kriging weights used to interpolate the residuals. The model in Eq.(2.1.4) is considered to be the Best Linear31

Predictor of spatial data (Christensen, 2001; Schabenberger and Gotway, 2004). It has a prediction variance32

that reflects the position of new locations (extrapolation effect) in both geographical and feature space:33

σ̂2
RK
(s0) = (C0 + C1)− cT

0 ·C
−1 · c0 +

�

q0 − qT ·C−1 · c0

�T
·
�

qT ·C−1 · q
�−1
·
�

q0 − qT ·C−1 · c0

�

(2.1.5)

34

where C0 + C1 is the sill variation and c0 is the vector of covariances of residuals at the unvisited location.35

1For example: if the points are extremely clustered, and/or if the sample is�100, and/or if the measurements are noisy or obtained
using non-standard techniques.
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Fig. 2.2: Whether we will use pure regression model, pure kriging or hybrid regression-kriging is basically determined by
R-square: (a) if R-square is high, then the residuals will be infinitively small; (c) if R-square is insignificant, then we will
probably finish with using ordinary kriging; (b) in most cases, we will use a combination of regression and kriging.

If the residuals show no spatial auto-correlation (pure nugget effect), the regression-kriging (Eq.2.1.4) 1

converges to pure multiple linear regression (Eq.1.3.14) because the covariance matrix (C) becomes identity 2

matrix: 3

C=















C0 + C1 · · · 0
... C0 + C1 0

0 0 C0 + C1















= (C0 + C1) · I (2.1.6)

4

so the kriging weights (Eq.1.3.4) at any location predict the mean residual i.e. 0 value. Similarly, the regression- 5

kriging variance (Eq.2.1.5) reduces to the multiple linear regression variance (Eq.1.3.16): 6

σ̂2
RK
(s0) = (C0 + C1)− 0+ qT

0 ·
�

qT ·
1

(C0 + C1)
· q
�−1

· q0

σ̂2
RK
(s0) = (C0 + C1) + (C0 + C1) · qT

0 ·
�

qT · q
�−1
· q0

7

and since (C0 + C1) = C(0) =MSE, the RK variance reduces to the MLR variance: 8

σ̂2
RK
(s0) = σ̂

2
OLS
(s0) =MSE ·

h

1+ qT
0 ·
�

qT · q
�−1
· q0

i

(2.1.7)

9

Likewise, if the target variable shows no correlation with the auxiliary predictors, the regression-kriging 10

model reduces to ordinary kriging model because the deterministic part equals the (global) mean value 11

(Fig. 2.2c, Eq.1.3.25). 12

The formulas above show that, depending on the strength of the correlation, RK might turn into pure 13

kriging — if predictors are uncorrelated with the target variable — or pure regression — if there is significant 14

correlation and the residuals show pure nugget variogram (Fig. 2.2). Hence, pure kriging and pure regression 15

should be considered as only special cases of regression-kriging (Hengl et al., 2004a, 2007a). 16
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2.1.1 Mathematical derivation of BLUP1

Understanding how a prediction model is derived becomes important once we start getting strange results or2

poor cross-validation scores. Each model is based on some assumptions that need to be respected and taken3

into account during the final interpretation of results. A detailed derivation of the BLUP for spatial data can be4

followed in several standard books on geostatistics (Stein, 1999; Christensen, 2001); one of the first complete5

derivations is given by Goldberger (1962). Here is a somewhat shorter explanation of how BLUP is derived,6

and what the implications of various mathematical assumptions are.7

All flavors of linear statistical predictors share the same objective of minimizing the estimation error vari-8

ance σ̂2
E(s0) under the constraint of unbiasedness (Goovaerts, 1997). In mathematical terms, the estimation9

error:10

σ̂2(s0) = E
¦

�

ẑ(s0)− z(s0)
�

·
�

ẑ(s0)− z(s0)
�T© (2.1.8)

11

is minimized under the (unbiasedness) constraint that:12

E
�

ẑ(s0)− z(s0)
	

= 0 (2.1.9)

13

Assuming the universal model of spatial variation, we can define a generalized linear regression model14

(Goldberger, 1962):15

z(s) = qT · β + ε(s) (2.1.10)

E {ε(s)}= 0 (2.1.11)

E
¦

ε · εT(s)
©

= C (2.1.12)

16

where ε is the residual variation, and C is the n×n positive-definite variance-covariance matrix of residuals.17

This model can be read as follows: (1) the information signal is a function of deterministic and residual parts;18

(2) the best estimate of the residuals is 0; (3) the best estimate of the correlation structure of residuals is the19

variance-covariance matrix.20

Now that we have defined the statistical model and the minimization criteria, we can derive the best linear21

unbiased prediction of the target variable:22

ẑ(s0) = δ̂
T
0 · z (2.1.13)

23

Assuming that we use the model shown in Eq.(2.1.10), and assuming that the objective is to minimize24

the estimation error σ̂2
E(s0), it can be shown2 that BLUP parameters can be obtained by solving the following25

system:26









C q

qT 0









·









δ

φ









=









c0

q0









(2.1.14)

27

where c0 is the vector of n×1 covariances at a new location, q0 is the vector of p×1 predictors at a new28

location, and φ is a vector of Lagrange multipliers. It can be further shown that, by solving the Eq.(2.1.14),29

we get the following:30

2The actual derivation of formulas is not presented. Readers are advised to obtain the paper by Goldberger (1962).
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ẑ(s0) = qT
0 · β̂ + λ̂

T
0 · (z− q · β̂)

β̂ =
�

qT ·C−1 · q
�−1
· qT ·C−1 · z (2.1.15)

λ̂0 = C−1 · c0

1

which is the prediction model explained in the previous section. 2

Under the assumption of the first order stationarity i.e. constant trend: 3

E {z(s)}= µ ∀s ∈ A (2.1.16)

4

the Eq.(2.1.15) modifies to (Schabenberger and Gotway, 2004, p.268): 5

ẑ(s0) = µ+ λ̂
T
0 · (z−µ)

λ̂0 = C−1 · c0

6

i.e. to ordinary kriging (§1.3.1). If we assume that the deterministic part of variation is not constant, then we 7

need to consider obtaining a number of covariates (q) that can be used to model the varying mean value. 8

Another important issue you need to know about the model in Eq.(2.1.15) is that, in order to solve the 9

residual part of variation, we need to know covariances at new locations: 10

C
�

e(s0), e(si)
�

= E
��

e(s0)−µ
	

·
�

e(si)−µ
	�

(2.1.17)

11

which would require that we know the values of the target variable at a new location (e(s0)), which we of 12

course do not know. Instead, we can use the existing sampled values (e(si) = z(si) − ẑ(si)) to model the 13

covariance structure using a pre-defined mathematical model (e.g. Eq.1.3.8). If we assume that the covariance 14

model is the same (constant) in the whole area of interest, then the covariance is dependent only on the 15

separation vector h: 16

C
�

e(s0), e(si)
�

= C(h) (2.1.18)

17

which is known as the assumption of second order stationarity; and which means that we can use the 18

same model to predict values anywhere in the area of interest (global estimation). If this assumption is not 19

correct, we would need to estimate covariance models locally. This is often not so trivial because we need to 20

have a lot of points (see further §2.2), so the assumption of second order stationarity is very popular among 21

geostatisticians. Finally, you need to also be aware that the residuals in Eq.(2.1.10) are expected to be normally 22

distributed around the regression line and homoscedastic3, as with any linear regression model (Kutner et al., 23

2004). If this is not the case, then the target variable needs to be transformed until these conditions are met. 24

The first and second order stationarity, and normality of residuals/target variables are rarely tested in 25

real case studies. In the case of regression-kriging (see further §2.1), the target variable does not have to be 26

stationary but its residuals do, hence we do not have to test this property with the original variable. In the case 27

of regression-kriging in a moving window, we do not have to test neither first nor second order stationarity. 28

Furthermore, if the variable is non-normal, then we can use some sort of GLM to fit the model. If this is 29

successful, the residuals will typically be normal around the regression line in the transformed space, and this 30

will allow us to proceed with kriging. The predicted values can finally be back-transformed to the original 31

scale using the inverse of the link function. 32

3Meaning symmetrically distributed around the feature space and the regression line.
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The lesson learned is that each statistical spatial predictor comes with: (a) a conceptual model that explains1

the general relationship (e.g. Eq.2.1.10); (b) model-associated assumptions (e.g. zero mean estimation error,2

first or second order stationarity, normality of the residuals); (c) actual prediction formulas (Eq.2.1.15); and3

(d) a set of proofs that, under given assumptions, a prediction model is the BLUP. Ignoring the important model4

assumptions can lead to poor predictions, even though the output maps might appear to be visually fine.5

2.1.2 Selecting the right spatial prediction technique6

Knowing that the most of the linear spatial prediction models are more or less connected, we can start by7

testing the most generic technique, and then finish by using the most suitable technique for our own case8

study. Pebesma (2004, p.689), for example, implemented such a nested structure in his design of the gstat9

package. An user can switch between one and another technique by following a simple decision tree shown in10

Fig. 2.3.11
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N
O
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Fig. 2.3: A general decision tree for selecting the suitable spatial
prediction model based on the results of model estimation. Similar
decision tree is implemented in the gstat package.

First, we need to check if the deterministic12

model is defined already, if it has not been, we13

can try to correlate the sampled variables with14

environmental factors. If the environmental15

factors are significantly correlated, we can fit16

a multiple linear regression model (Eq.1.3.14)17

and then analyze the residuals for spatial au-18

tocorrelation. If the residuals show no spa-19

tial autocorrelation (pure nugget effect), we20

proceed with OLS estimation of the regression21

coefficients. Otherwise, if the residuals show22

spatial auto-correlation, we can run regression-23

kriging. If the data shows no correlation with24

environmental factors, then we can still ana-25

lyze the variogram of the target variable. This26

time, we might also consider modeling the27

anisotropy. If we can fit a variogram different28

from pure nugget effect, then we can run or-29

dinary kriging. Otherwise, if we can only fit a30

linear variogram, then we might just use some31

mechanical interpolator such as the inverse dis-32

tance interpolation.33

If the variogram of the target variable34

shows no spatial auto-correlation, and no cor-35

relation with environmental factors, this practi-36

cally means that the only statistically valid pre-37

diction model is to estimate a global mean for38

the whole area. Although this might frustrate39

you because it would lead to a nonsense map where each pixel shows the same value, you should be aware40

that even this is informative4.41

How does the selection of the spatial prediction model works in practice? In the gstat package, a user can42

easily switch from one to other prediction model by changing the arguments in the generic krige function in43

R (Fig. 1.13; see further §3.2). For example, if the name of the input field samples is meuse and the prediction44

locations (grid) is defined by meuse.grid, we can run the inverse distance interpolation (§1.2.1) by specifying45

(Pebesma, 2004):46

> library(gstat)
> data(meuse)
> coordinates(meuse) <- ∼ x+y
> data(meuse.grid)
> coordinates(meuse.grid) <- ∼ x+y

4Sometimes an information that we are completely uncertain about a feature is better than a colorful but completely unreliable map.
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> gridded(meuse.grid) <- TRUE
> zinc.id <- krige(zinc ∼ 1, data=meuse, newdata=meuse.grid)

[inverse distance weighted interpolation]

where zinc is the sampled environmental variable (vector) and zinc.id is the resulting raster map (shown 1

in Fig. 1.13). Instead of using inverse distance interpolation we might also try to fit the values using the 2

coordinates and a 2nd order polynomial model: 3

> zinc.ts <- krige(zinc ∼ x+y+x*y+x*x+y*y, data=meuse, newdata=meuse.grid)

[ordinary or weighted least squares prediction]

which can be converted to the moving surface fitting by adding a search window: 4

> zinc.mv <- krige(zinc ∼ x+y+x*y+x*x+y*y, data=meuse, newdata=meuse.grid, nmax=20)

[ordinary or weighted least squares prediction]

If we add a variogram model, then gstat will instead of running inverse distance interpolation run ordinary 5

kriging (§1.3.1): 6

> zinc.ok <- krige(log1p(zinc) ∼ 1, data=meuse, newdata=meuse.grid,
+ model=vgm(psill=0.714, "Exp", range=449, nugget=0))

[using ordinary kriging]

where vgm(psill=0.714, "Exp", range=449, nugget=0) is the Exponential variogram model with a sill 7

parameter of 0.714, range parameter of 449 m and the nugget parameter of 0 (the target variable was log- 8

transformed). Likewise, if there were environmental factors significantly correlated with the target variable, 9

we could run OLS regression (§1.3.2) by omitting the variogram model: 10

> zinc.ec <- krige(log1p(zinc) ∼ dist+ahn, data=meuse, newdata=meuse.grid)

[ordinary or weighted least squares prediction]

where dist and ahn are the environmental factor used as predictors (raster maps), which are available as 11

separate layers within the spatial layer5 meuse.grid. If the residuals do show spatial auto-correlation, then 12

we can switch to universal kriging (Eq.2.1.4) by adding the variogram: 13

> zinc.rk <- krige(log1p(zinc) ∼ dist+ahn, data=meuse, newdata=meuse.grid,
+ model=vgm(psill=0.151, "Exp", range=374, nugget=0.055))

[using universal kriging]

If the model between the environmental factors and our target variable is deterministic, then we can use 14

the point samples to calibrate our predictions. The R command would then look something like this: 15

> zinc.rkc <- krige(zinc ∼ zinc.df, data=meuse, newdata=meuse.grid,
+ model=vgm(psill=3, "Exp", range=500, nugget=0))

[using universal kriging]

where zinc.df are the values of the target variable estimated using a deterministic function. 16

In gstat, a user can also easily switch from estimation to simulations (§2.4) by adding to the command 17

above an additional argument: nsim=1. This will generate Sequential Gaussian Simulations using the same 18

prediction model. Multiple simulations can be generated by increasing the number set for this argument. In 19

addition, a user can switch from block predictions by adding argument block=100; and from global estimation 20

of weights by adding a search radius or maximum number of pairs, e.g. radius=1000 or nmax=60. 21

By using the automap6 package one needs to specify even less arguments. For example, the command: 22

5In R a SpatialGridDataframe object.
6http://cran.r-project.org/web/packages/automap/

http://cran.r-project.org/web/packages/automap/
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> zinc.rk <- autoKrige(log1p(zinc) ∼ dist, data=meuse, newdata=meuse.grid)

[using universal kriging]

will do much of the standard geostatistical analysis without any intervention from the user: it will filter the1

duplicate points where needed, estimate the residuals, then fit the variogram for the residuals, and generate2

the predictions at new locations. The results can be plotted in a single page in a form of a report. Such generic3

commands can significantly speed up data processing, and make it easier for a non-geostatistician to generate4

maps (see further section 2.10.3).5

In the intamap package7, one needs to set even less parameters to generate predictions from a variety of6

methods:7

> meuse$value <- log(meuse$zinc)
> output <- interpolate(data=meuse, newdata=meuse.grid)

R 2009-11-11 17:09:14 interpolating 155 observations, 3103 prediction locations
[Time models loaded...]
[1] "estimated time for copula 133.479866956255"
Checking object ... OK

which gives the (presumably) best interpolation method8 for the current problem (value column), given the8

time available set with maximumTime.9

A more systematic strategy to select the right spatial prediction technique is to use objective criteria of10

mapping success (i.e. a posteriori criteria). From the application point of view, it can be said that there are11

(only) five relevant criteria to evaluate various spatial predictors (see also §1.4):12

(1.) the overall mapping accuracy, e.g. standardized RMSE at control points — the amount of variation13

explained by the predictor expressed in %;14

(2.) the bias, e.g. mean error — the accuracy of estimating the central population parameters;15

(3.) the model robustness, also known as model sensitivity — in how many situations would the algorithm16

completely fail / how much artifacts does it produces?;17

(4.) the model reliability — how good is the model in estimating the prediction error (how accurate is the18

prediction variance considering the true mapping accuracy)?;19

(5.) the computational burden — the time needed to complete predictions;20

From this five, you could derive a single composite measure that would then allow you to select ‘the21

optimal’ predictor for any given data set, but this is not trivial! Hsing-Cheng and Chun-Shu (2007) suggest a22

framework to select the best predictor in an automated way, but this work would need to be much extended.23

In many cases we simply finish using some naïve predictor — that is predictor that we know has a statistically24

more optimal alternative9, but this alternative is simply not practical.25

The intamap decision tree, shown in Fig. 2.4, is an example of how the selection of the method can be26

automated to account for (1) anisotropy, (2) specified observation errors, and (3) extreme values. This is27

a specific application primarily developed to interpolate the radioactivity measurements from the European28

radiological data exchange platform, a network of around 4000 sensors. Because the radioactivity measure-29

ments can often carry local extreme values, robust techniques need to be used to account for such effects.30

For example, Copula kriging10 methods can generate more accurate maps if extreme values are also present31

in the observations. The problem of using methods such as Copula kriging, however, is that they can often32

take even few hours to generate maps even for smaller areas. To minimize the risk of running into endless33

computing, the authors of the intamap decision tree have decided to select the prediction algorithm based on34

7http://cran.r-project.org/web/packages/intamap/
8intamap automatically chooses between: (1) kriging, (2) copula methods, (3) inverse distance interpolation, projected spatial gaus-

sian process methods in the psgp package, (4) transGaussian kriging or yamamoto interpolation.
9For example, instead of using the REML approach to variogram modeling, we could simply fit a variogram using weighted least

squares (see §1.3.1), and ignore all consequences (Minasny and McBratney, 2007).
10Copula kriging is a sophistication of ordinary kriging; an iterative technique that splits the original data set and then re-estimates the

model parameters with maximization of the corresponding likelihood function (Bárdossy and Li, 2008).

http://cran.r-project.org/web/packages/intamap/
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the interpolation result e.g. as a GML document or coverage. To encode the interpolation
error UncertML, a markup language for specifying information that is represented prob-
abilistically, has been developed within the project, which OGC has currently released as
an OGC Discussion Paper [8].

Observation errors
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[Interpolation domain]
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Figure 2: Decision tree for the interpolation method choices in the interpolation process
that takes place in R. References in text.
The R back end and interpolation decision tree The procedure for the statistical analysis
of the data are implemented in R, the major open source environment for analysing sta-
tistical data. As figure 1 shows, this is not noticeable for the user of the INTAMAP web
processing service, as R is run in the back end. Interfacing R from the web processing
service by using the TCP/IP protocol (i.e., as a web service, using the Rserve package[7])
has the advantage that the R process, doing the numerical work, may be running on a
dedicated computing cluster not directly connected to the internet. Multiple interpolation
requests at the same time will be executed in parallel. A second advantage of having all
statistical routines in the R environment is that it can be re-used independently of the WPS
interface, e.g. interactively on a PC, from a SOAP interface, or on a mobile device. The
decision tree for choosing an interpolation method automatically is shown in Figure 2.
In the context of the INTAMAP project, dedicated interpolation methods have been im-
plemented for (i) detecting and correcting for anisotropy, (ii) dealing with extreme value
distributions, (iii) dealing with known measurement errors.

Methods for network harmonisation were also developed, but are not part of the au-
tomated interpolation framework, as this should be done before interpolation takes place.
The same is true for outlier removal and monitoring network optimisation. With the soft-
ware developed for INTAMAP, it would be relatively simple to customize the INTAMAP
web service and perform these manipulations.

4 OPERATIONAL PERFORMANCE

At the stage of writing this paper, the INTAMAP interpolation service is fully functional,
and open for testing. During the testing period, the the following issues need to be further

Fig. 2.4: Decision tree used in the intamap interpolation service for automated mapping. After Pebesma et al. (2009).

the computational time. Hence the system first estimates the approximate time needed to run the prediction 1

using the most sophisticated technique; if this is above the threshold time, the system will switch to a more 2

naïve method (Pebesma et al., 2009). As a rule of thumb, the authors of intamap suggest 30 seconds as the 3

threshold time to accept automated generation of a map via a web-service. 4

2.1.3 The Best Combined Spatial Predictor 5

Assuming that a series of prediction techniques are mutually independent11, predictions can be generated as a 6

weighted average from multiple predictions i.e. by generating the Best Combined Spatial Prediction (BCSP): 7

ẑBCSP(s0) =
ẑSP1(s0) ·

1
σ̂SP1(s0)

+ ẑSP2(s0) ·
1

σ̂SP2(s0)
+ . . .+ ẑSPj(s0) ·

1
σ̂SPj(s0)

p
∑

j=1

1
σ̂SPj(s0)

(2.1.19)

8

where σSPj(s0) is the prediction error estimated by the model (prediction variance), and p is the number 9

of predictors. For example, we can generate a combined prediction using OK and e.g. GLM-regression and 10

then sum-up the two maps (Fig. 2.5). The predictions will in some parts of the study are look more as 11

OK, in others more as GLM, which actually depicts extrapolation areas of both methods. This map is very 12

similar to predictions produced using regression-kriging (see further Fig. 5.9); in fact, one could probably 13

mathematically prove that under ideal conditions (absolute stationarity of residuals; no spatial clustering; 14

perfect linear relationship), BCSP predictions would equal the regression-kriging predictions. In general, the 15

map in the middle of Fig. 2.5 looks more as the GLM-regression map because this map is about 2–3 times 16

more precise than the OK map. It is important to emphasize that, in order to combine various predictors, we 17

do need to have an estimate of the prediction uncertainty, otherwise we are not able to assign the weights (see 18

further §7.5). In principle, linear combination of statistical techniques using the Eq.(2.1.19) above should be 19

avoided if a theoretical basis exists that incorporates such combination. 20

11If they do not use the same model parameters; if they treat different parts of spatial variation etc.
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Fig. 2.5: Best Combined Spatial Predictor as weighted average of ordinary kriging (zinc.ok) and GLM regression
(zinc.glm).

In the example above (GLM+OK), we assume that the predictions/prediction errors are independent, and1

they are probably not. In addition, a statistical theory exists that supports a combination of regression and2

kriging (see previously §2.1.1), so there is no need to run predictions separately and derive an unrealistic3

measure of model error. The BCSP can be only interesting for situations where there are indeed several4

objective predictors possible, where no theory exists that reflects their combination, and/or where fitting of5

individual models is faster and less troublesome than fitting of a hybrid model. For example, ordinary kriging6

can be speed-up by limiting the search radius, predictions using GLMs is also relatively inexpensive. External7

trend kriging using a GLM in geoRglm package might well be the statistically most robust technique you could8

possibly use, but it can also be beyond the computational power of your PC.9

The combined prediction error of a BCSP can be estimated as the smallest prediction error achieved by any10

of the prediction models:11

σ̂BCSP(s0) =min
¦

σ̂SP1(s0), . . . , σ̂SPj(s0)
©

(2.1.20)

12

which is really an ad hoc formula and should be used only to visualize and depict problematic areas (highest13

prediction error).14

2.1.4 Universal kriging, kriging with external drift15

The geostatistical literature uses many different terms for what are essentially the same or at least very sim-16

ilar techniques. This confuses the users and distracts them from using the right technique for their mapping17

projects. In this section, we will show that both universal kriging, kriging with external drift and regression-18

kriging are basically the same technique. Matheron (1969) originally termed the technique Le krigeage uni-19

versel, however, the technique was intended as a generalized case of kriging where the trend is modeled as20

a function of coordinates. Thus, many authors (Deutsch and Journel, 1998; Wackernagel, 2003; Papritz and21

Stein, 1999) reserve the term Universal Kriging (UK) for the case when only the coordinates are used as predic-22

tors. If the deterministic part of variation (drift) is defined externally as a linear function of some explanatory23

variables, rather than the coordinates, the term Kriging with External Drift (KED) is preferred (Wackernagel,24

2003; Chiles and Delfiner, 1999). In the case of UK or KED, the predictions are made as with kriging, with25

the difference that the covariance matrix of residuals is extended with the auxiliary predictors qk(si)’s (Web-26

ster and Oliver, 2001, p.183). However, the drift and residuals can also be estimated separately and then27

summed. This procedure was suggested by Ahmed and de Marsily (1987); Odeh et al. (1995) later named it28

Regression-kriging, while Goovaerts (1997, §5.4) uses the term Kriging with a trend model to refer to a family29

of predictors, and refers to RK as Simple kriging with varying local means. Although equivalent, KED and RK30

differ in the computational steps used.31
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Let us zoom into the two variants of regression-kriging. In the case of KED, predictions at new locations 1

are made by: 2

ẑKED(s0) =
n
∑

i=1

wKED
i (s0)·z(si) (2.1.21)

3

for 4

n
∑

i=1

wKED
i (s0)·qk(si) = qk(s0); k = 1, ..., p (2.1.22)

5

or in matrix notation: 6

ẑKED(s0) = δ
T
0 · z (2.1.23)

7

where z is the target variable, qk ’s are the predictor variables i.e. values at a new location (s0), δ0 is the vector 8

of KED weights (wKED
i ), p is the number of predictors and z is the vector of n observations at primary locations. 9

The KED weights are solved using the extended matrices: 10

λKED0 =
¦

wKED
1 (s0), ..., wKED

n (s0),ϕ0(s0), ...,ϕp(s0)
©T

= CKED−1 · cKED0

(2.1.24)

11

where λKED0 is the vector of solved weights, ϕp are the Lagrange multipliers, CKED is the extended covariance 12

matrix of residuals and cKED0 is the extended vector of covariances at a new location. 13

In the case of KED, the extended covariance matrix of residuals looks like this (Webster and Oliver, 2001, 14

p.183): 15

CKED =









































C(s1, s1) · · · C(s1, sn) 1 q1(s1) · · · qp(s1)
...

...
...

...
...

C(sn, s1) · · · C(sn, sn) 1 q1(sn) · · · qp(sn)

1 · · · 1 0 0 · · · 0

q1(s1) · · · q1(sn) 0 0 · · · 0
...

... 0
...

...

qp(s1) · · · qp(sn) 0 0 · · · 0









































(2.1.25)

16

and cKED0 like this: 17

cKED0 =
¦

C(s0, s1), ..., C(s0, sn), q0(s0), q1(s0), ..., qp(s0)
©T

; q0(s0) = 1 (2.1.26)

18

Hence, KED looks exactly as ordinary kriging (Eq.1.3.2), except the covariance matrix and vector are 19

extended with values of auxiliary predictors. 20

In the case of RK, the predictions are made separately for the drift and residuals and then added back 21

together (Eq.2.1.4): 22
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ẑRK(s0) = qT
0 · β̂GLS +λ

T
0 · e

1

It can be demonstrated that both KED and RK algorithms give exactly the same results (Stein, 1999; Hengl2

et al., 2007a). Start from KED where the predictions are made as in ordinary kriging using ẑKED(s0) = λT
KED
· z.3

The KED kriging weights (λT
KED

) are obtained by solving the system (Wackernagel, 2003, p.179):4









C q

qT 0









·









λKED

φ









=









c0

q0









5

where φ is a vector of Lagrange multipliers. Writing this out yields:6

C ·λKED + q ·φ = c0

qT ·λKED = q0
(2.1.27)

7

from which follows:8

qT ·λKED = qT ·C−1 · c0 − qT ·C−1 · q ·φ (2.1.28)

9

and hence:10

φ =
�

qT ·C−1 · q
�−1
· qT ·C−1 · c0 −

�

qT ·C−1 · q
�−1
· q0 (2.1.29)

11

where the identity qT · λKED = q0 has been used. Substituting φ back into Eq. (2.1.27) shows that the KED12

weights equal (Papritz and Stein, 1999, p.94):13

λKED = C−1 · c0 −C−1 · q ·
h

�

qT ·C−1 · q
�−1
· qT ·C−1 · c0 −

�

qT ·C−1 · q
�−1
· q0

i

= C−1 ·
h

c0 + q ·
�

qT ·C−1q·
�−1
·
�

q0 − qT ·C−1 · c0

�

i (2.1.30)

14

Let us now turn to RK. Recall from Eq.(2.1.3) that the GLS estimate for the vector of regression coefficients15

is given by:16

β̂GLS =
�

qT ·C−1 · q
�−1
· qT ·C−1 · z (2.1.31)

17

and weights for residuals by:18

λT
0 = cT

0 ·C
−1 (2.1.32)

19

and substituting these in RK formula (Eq.2.1.4) gives:20

= qT
0 · β̂GLS +λ

T
0 · (z− q · β̂GLS)

=
h

qT
0 ·
�

qT ·C−1 · q
�−1
· qT ·C−1 + cT

0 ·C
−1 − cT

0 ·C
−1 · q ·

�

qT ·C−1q
�−1
· qT ·C−1

i

· z

= C−1 ·
h

cT
0 + qT

0 ·
�

qT ·C−1 · q
�−1
· qT − cT

0 ·C
−1 · q ·

�

qT ·C−1q
�−1
· qT
i

· z

= C−1 ·
h

c0 + q ·
�

qT ·C−1 · q
�−1
·
�

q0 − qT ·C−1c0

�

i

· z

(2.1.33)
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The left part of the equation is equal to Eq.(2.1.30), which proves that KED will give the same predictions 1

as RK if same inputs are used. A detailed comparison of RK and KED using the 5–points example in MS Excel 2

is also available as supplementary material12. 3

Although the KED seems, at first glance, to be computationally more straightforward than RK, the vari- 4

ogram parameters for KED must also be estimated from regression residuals, thus requiring a separate regres- 5

sion modeling step. This regression should be GLS because of the likely spatial correlation between residuals. 6

Note that many analyst use instead the OLS residuals, which may not be too different from the GLS residuals 7

(Hengl et al., 2007a; Minasny and McBratney, 2007). However, they are not optimal if there is any spatial 8

correlation, and indeed they may be quite different for clustered sample points or if the number of samples is 9

relatively small (�200). 10

A limitation of KED is the instability of the extended matrix in the case that the covariate does not vary 11

smoothly in space (Goovaerts, 1997, p.195). RK has the advantage that it explicitly separates trend estimation 12

from spatial prediction of residuals, allowing the use of arbitrarily-complex forms of regression, rather than the 13

simple linear techniques that can be used with KED (Kanevski et al., 1997). In addition, it allows the separate 14

interpretation of the two interpolated components. For these reasons the use of the term regression-kriging 15

over universal kriging has been advocated by the author (Hengl et al., 2007a). The emphasis on regression is 16

important also because fitting of the deterministic part of variation is often more beneficial for the quality of 17

final maps than fitting of the stochastic part (residuals). 18

2.1.5 A simple example of regression-kriging 19

The next section illustrates how regression-kriging computations work and compares it to ordinary kriging 20

using the textbook example from Burrough and McDonnell (1998, p.139-141), in which five measurements 21

are used to predict a value of the target variable (z) at an unvisited location (s0) (Fig. 2.6a). We extend this 22

example by adding a hypothetical explanatory data source: a raster image of 10×10 pixels (Fig. 2.6b), which 23

has been constructed to show a strong negative correlation with the target variable at the sample points. 24

Fig. 2.6: Comparison of ordinary kriging and regression-kriging using a simple example with 5 points (Burrough and
McDonnell, 1998, p.139–141): (a) location of the points and unvisited site; (b) values of the covariate q; (c) variogram
for target and residuals, (d) OLS and GLS estimates of the regression model and results of prediction for a 10×10 grid
using ordinary kriging (e) and regression-kriging (f). Note how the RK maps reflects the pattern of the covariate.

The RK predictions are computed as follows: 25

12http://spatial-analyst.net/book/RK5points

http://spatial-analyst.net/book/RK5points
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(1.) Determine a linear model of the variable as predicted by the auxiliary map q. In this case the correlation1

is high and negative with OLS coefficients b0=6.64 and b1=-0.195 (Fig. 2.6d).2

(2.) Derive the OLS residuals at all sample locations as:3

e∗(si) = z(si)−
�

b0 + b1 · q(si)
�

(2.1.34)

For example, the point at (x=9, y=9) with z=2 has a prediction of 6.64− 0.195 · 23= 1.836, resulting4

in an OLS residual of e∗ =−0.164.5

(3.) Model the covariance structure of the OLS residuals. In this example the number of points is far6

too small to estimate the autocorrelation function, so we follow the original text in using a hypothetical7

variogram of the target variable (spherical model, nugget C0=2.5, sill C1=7.5 and range R=10) and8

residuals (spherical model, C0=2, C1=4.5, R=5). The residual model is derived from the target variable9

model of the text by assuming that the residual variogram has approximately the same form and nugget10

but a somewhat smaller sill and range (Fig. 2.6c), which is often found in practice (Hengl et al., 2004a).11

(4.) Estimate the GLS coefficients using Eq.(2.1.3). In this case we get just slightly different coefficients12

b0=6.68 and b1=-0.199. The GLS coefficients will not differ much from the OLS coefficients as long13

there is no significant clustering of the sampling locations (Fig. 2.6d) as in this case.14

(5.) Derive the GLS residuals at all sample locations:15

e∗∗(si) = z(si)−
�

b0 + b1 · q(si)
�

(2.1.35)

Note that the b now refer to the GLS coefficients.16

(6.) Model the covariance structure of the GLS residuals as a variogram. In practice this will hardly differ17

from the covariance structure of the OLS residuals.18

(7.) Interpolate the GLS residuals using ordinary kriging (OK) using the modeled variogram13. In this19

case at the unvisited point location (5, 5) the interpolated residual is −0.081.20

(8.) Add the GLS surface to the interpolated GLS residuals at each prediction point. At the unvisited point21

location (5,5) the explanatory variable has a value 12, so that the prediction is then:22

ẑ(5, 5) = b0 + b1 · qi +
n
∑

i=1

λi(s0)·e(si)

= 6.68− 0.199 · 12− 0.081= 4.21

(2.1.36)

which is, in this specific case, a slightly different result than that derived by OK with the hypothetical23

variogram of the target variable (ẑ=4.30).24

The results of OK (Fig. 2.6e) and RK (Fig. 2.6f) over the entire spatial field are quite different in this case,25

because of the strong relation between the covariate and the samples. In the case of RK, most of variation in26

the target variable (82%) has been accounted for by the predictor. Unfortunately, this version of RK has not27

been implemented in any software package yet14 (see further §3.4.3). Another interesting issue is that most28

of the software in use (gstat, SAGA) does not estimate variogram using the GLS estimation of the residuals,29

but only of the OLS residuals (0 iterations). Again, for most of balanced and well spread sample sets, this will30

not cause any significant problems (Minasny and McBratney, 2007).31

13Some authors argue whether one should interpolate residuals using simple kriging with zero expected mean of the residuals (by
definition) or by ordinary kriging. In the case of OLS estimation, there is no difference; otherwise one should always use OK to avoid
making biased estimates.

14Almost all geostatistical packages implement the KED algorithm because it is mathematically more elegant and hence easier to
program.
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2.2 Local versus localized models 1

Fig. 2.7: Local regression-kriging is a further sophistication of
regression-kriging. It will largely depend on the availability
of explanatory and field data.

In many geostatistical packages, a user can opt to 2

limit the selection of points to determine the kriging 3

weights by setting up a maximum distance and/or 4

minimum and maximum number of point pairs (e.g. 5

take only the closest 50 points). This way, the cal- 6

culation of the new map can be significantly speed 7

up. In fact, kriging in global neighborhood where 8

n �1000 becomes cumbersome because of compu- 9

tation of C−1 (Eq.1.3.5). Recall from §1.3.1 that the 10

importance of points (in the case of ordinary kriging 11

and assuming a standard initial variogram model) 12

exponentially decreases with their distance from the 13

point of interest. Typically, geostatisticians suggest 14

that already first 30–60 closest points will be good 15

enough to obtain stable predictions. 16

A prediction model where the search radius for 17

derivation of kriging weights (Eq.1.3.4) is limited to 18

a local neighborhood can be termed localized pre- 19

diction model. There is a significant difference be- 20

tween localized and local prediction model, which of- 21

ten confuses inexperienced users. For example, if we set a search radius to re-estimate the variogram model, 22

then we speak about a local prediction model, also known as the moving window kriging or kriging using 23

local variograms (Haas, 1990; Walter et al., 2001; Lloyd, 2009). The local prediction model assumes that the 24

variograms (and regression models) are non-stationary, i.e. that they need to be estimated locally. 25

Fig. 2.8: Local variogram modeling and local ordinary kriging using a moving window algorithm in Vesper: a user can
visually observe how the variograms change locally. Courtesy of Budiman Minasny.

While localized prediction models are usually just a computational trick to speed up the calculations, 26

local prediction models are computationally much more demanding. Typically, they need to allow automated 27



42 Regression-kriging

variogram modeling and filtering of improbable models to prevent artifacts in the final outputs. A result of1

local prediction model (e.g. moving window variogram modeling) are not only maps of predictions, but also2

spatial distribution of the fitted variogram parameters (Fig. 2.7). This way we can observe how does the3

nugget variation changes locally, which parts of the area are smooth and which are noisy etc. Typically, local4

variogram modeling and prediction make sense only when we work with large point data sets (e.g.�1000 of5

field observations), which is still not easy to find. In addition, local variogram modeling is not implemented in6

many packages. In fact, the author is aware of only one: Vesper15 (Fig. 2.8).7

In the case of regression-kriging, we could also run both localized and local models. This way we will not8

only produce maps of variogram parameters but we would also be able to map the regression coefficients16.9

In the case of kriging with external drift, some users assume that the same variogram model can be used in10

various parts of the study area and limit the search window to speed up the calculations17. This is obviously11

a simplification, because in the case of KED both regression and kriging part of predictions are solved at the12

same time. Hence, if we limit the search window, but keep a constant variogram model, we could obtain13

very different predictions then if we use the global (regression-kriging) model. Only if the variogram of14

residuals if absolutely stationary, then we can limit the search window to fit the KED weights. In practice, either15

global (constant variogram) or local prediction models (locally estimated regression models and variograms16

of residuals) should be used for KED model fitting.17

2.3 Spatial prediction of categorical variables18

Fig. 2.9: Difficulties of predicting point-class data (b) and (d), as com-
pared to quantitative variables (a) and (c), is that the class-interpolators
are typically more complex and computationally more time-consuming.

Although geostatistics is primarily in-19

tended for use with continuous environ-20

mental variables, it can also be used to21

predict various types of categorical or22

class-type variables. Geostatistical anal-23

ysis of categorical variables is by many24

referred to as the indicator geostatis-25

tics (Bierkens and Burrough, 1993). In26

practice, indicator kriging leads to many27

computational problems, which probably28

explains why there are not many opera-29

tional applications of geostatistical map-30

ping of categorical variables in the world31

(Hession et al., 2006). For example, it32

will typically be difficult to fit variogram33

for less frequent classes that occur at iso-34

lated locations (Fig. 2.9d).35

Statistical grounds of indicator geo-36

statistics has been recently reviewed by37

Papritz et al. (2005); Papritz (2009) who38

recognizes several conceptual difficulties39

of working with indicator data: (1) incon-40

sistent modeling of indicator variograms,41

and (2) use of global variogram leads to biased predictions because the residuals are by definition non-42

stationary. Any attempt to use indicator kriging for data with an apparent trend either explicitly or implic-43

itly by using ordinary indicator kriging within a local neighborhood requires the modeling of non-stationary44

indicator variograms to preserve the mean square optimality of kriging (Papritz, 2009). Indicator regression-45

kriging without any transformation has also been criticized because the model (binomial variable) suggests46

that residuals have mean-dependent variance (p · (1− p)), and thus using a single variogram for the full set of47

residuals is not in accordance with theory.48

Let us denote the field observations of a class-type variable as zc(s1), zc(s2), ..., zc(sn), where c1, c2,..., ck are49

discrete categories (or states) and k is the total number of classes. A technique that estimates the soil-classes50

15http://www.usyd.edu.au/su/agric/acpa/vesper/vesper.html
16Regression coefficients are often mapped with geographically weighted regression (Griffith, 2008).
17Software such as gstat and SAGA allow users to limit the search radius; geoR does not allow this flexibility.

http://www.usyd.edu.au/su/agric/acpa/vesper/vesper.html
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at new unvisited location ẑc(s0), given the input point data set (zc(s1), zc(s2), ..., zc(sn)), can then be named a 1

class-type interpolator. If spatially exhaustive predictors q1, q2, ..., qp (where p is the number of predictors) are 2

available, they can be used to map each category over the area of interest. So far, there is a limited number of 3

techniques that can achieve this: 4

Multi-indicator co-kriging — The simple multi-indicator kriging can also be extended to a case where several 5

covariates are used to improve the predictions. This technique is known by the name indicator (soft) 6

co-kriging (Journel, 1986). Although the mathematical theory is well explained (Bierkens and Burrough, 7

1993; Goovaerts, 1997; Pardo-Iguzquiza and Dowd, 2005), the application is cumbersome because of 8

the need to fit a very large number of cross-covariance functions. 9

Multinomial Log-linear regression — This a generalization of logistic regression for situations when there 10

are multiple classes of a target variable (Venables and Ripley, 2002). Each class gets a separate set of 11

regression coefficients (βc). Because the observed values equal either 0 or 1, the regression coefficients 12

need to be solved through a maximum likelihood iterative algorithm (Bailey et al., 2003), which makes 13

the whole method somewhat more computationally demanding than simple multiple regression. An 14

example of multinomial regression is given further in section 9.6. 15

Regression-kriging of indicators — One approach to interpolate soil categorical variables is to first assign 16

memberships to point observations and then to interpolate each membership separately. This approach 17

was first elaborated by de Gruijter et al. (1997) and then applied by Bragato (2004) and Triantafilis et al. 18

(2001). An alternative is to first map cheap, yet descriptive, diagnostic distances and then classify these 19

per pixel in a GIS (Carré and Girard, 2002). 20

In the case of logistic regression, the odds to observe a class (c) at new locations are computed as: 21

ẑ+c (s0) =
�

1+ exp
�

−βc
T · q0

��−1
; c = 1,2, .., k (2.3.1)

22

where ẑ+c (s0) are the estimated odds for class (c) at a new location s0 and k is the number of classes. The 23

multinomial logistic regression can also be extended to regression-kriging (for a complete derivation see Hengl 24

et al. (2007b)). This means that the regression modeling is supplemented with the modeling of variograms 25

for regression residuals, which can then be interpolated and added back to the regression estimate. So the 26

predictions are obtained using: 27

ẑ+c (s0) =
�

1+ exp
�

−βc
T · q0

��−1
+ ê+c (s0) (2.3.2)

28

where ê+c are the interpolated residuals. The extension from multinomial regression to regression-kriging is not 29

as simple as it seems. This is because the estimated values at new locations in Eq.(2.3.2) are constrained within 30

the indicator range, which means that interpolation of residuals might lead to values outside the physical range 31

(<0 or >1)18. One solution to this problem is to predict the trend part in transformed space, then interpolate 32

residuals, sum the trend and residual part and back-transform the values (see §5.4). 33

Hengl et al. (2007b) show that memberships (µc), instead of indicators, are more suitable both for regres- 34

sion and geostatistical modeling, which has been also confirmed by several other authors (McBratney et al., 35

1992; de Gruijter et al., 1997; Triantafilis et al., 2001). Memberships can be directly linearized using the logit 36

transformation: 37

µ+c = ln
�

µc

1−µc

�

; 0< µc < 1 (2.3.3)

38

where µc are the membership values used as input to interpolation. Then, all fitted values will be within the 39

physical range (0–1). The predictions of memberships for class c at new locations are then obtained using the 40

standard regression-kriging model (Eq.2.1.4): 41

µ̂+c (s0) = qT
0 · β̂c,GLS +λ

T
c,0 ·
�

µ+c − q · β̂c,GLS

�

(2.3.4)

18The degree to which they will fall outside the 0–1 range is controlled by the variogram and amount of extrapolation in feature space
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The interpolated values can then be back-transformed to the membership range using (Neter et al., 1996):1

µ̂c(s0) =
eµ̂
+
c (s0)

1+ eµ̂+c (s0)
(2.3.5)

2

In the case of regression-kriging of memberships, both spatial dependence and correlation with the pre-3

dictors are modeled in a statistically sophisticated way. In addition, regression-kriging of memberships allows4

fitting of each class separately, which facilitates the understanding of the distribution of soil variables and the5

identification of problematic classes, i.e. classes which are not correlated with the predictors or do not show6

any spatial autocorrelation etc.7

Spatial prediction of memberships can be excessive in computation time. Another problem is that, if the8

interpolated classes (odds, memberships) are fitted only by using the sampled data, the predictions of the9

odds/memberships will commonly not sum to unity at new locations. In this case, one needs to standardize10

values for each grid node by diving the original values by the sum of odds/memberships to ensure that they11

sum to unity, which is an ad-hoc solution. An algorithm, such as compositional regression-kriging19 will need12

to be developed.13

A number of alternative hybrid class-interpolators exists, e.g. the Bayesian Maximum Entropy (BME) ap-14

proach by D’Or and Bogaert (2005). Another option is to use Markov-chain algorithms (Li et al., 2004, 2005a).15

However, note that although use of the BME and Markov-chain type of algorithms is a promising development,16

their computational complexity makes it still far from use in operational mapping.17

2.4 Geostatistical simulations18

Regression-kriging can also be used to generate simulations of a target variable using the same inputs as in the19

case of spatial prediction system. An equiprobable realization of an environmental variable can be generated20

by using the sampled values and their variogram model:21

Z (SIM)(s0) = E
¦

Z |z(s j),γ(h)
©

(2.4.1)

22

where Z (SIM) is the simulated value at the new location. The most common technique in geostatistics that23

can be used to generate equiprobable realizations is the Sequential Gaussian Simulation (Goovaerts, 1997,24

p.380-392). It starts by defining a random path for visiting each node of the grid once. At first node, kriging is25

used to determine the location-specific mean and variance of the conditional cumulative distribution function.26

A simulated value can then be drawn by using the inverse normal distribution (Box and Muller, 1958; Banks,27

1998):28

zSIMi = ẑi + σ̂i ·
p

−2 · ln(1− A) · cos(2 ·π · B) (2.4.2)

29

where zSIMi is the simulated value of the target variable with induced error, A and B are the independent random30

numbers within the 0−0.99. . . range, ẑi is the estimated value at ith location, and σ̂i is the regression-kriging31

error. The simulated value is then added to the original data set and the procedure is repeated until all nodes32

have been visited. Geostatistical simulations are used in many different fields to generate multiple realizations33

of the same feature (Heuvelink, 1998; Kyriakidis et al., 1999), or to generate realistic visualizations of a natural34

phenomena (Hengl and Toomanian, 2006; Pebesma et al., 2007). Examples of how to generate geostatistical35

simulations and use them to estimate the propagated error are further shown in section 10.3.2.36

2.5 Spatio-temporal regression-kriging37

In statistics, temporal processes (time series analysis, longitudinal data analysis) are well-known, but mixed38

spatio-temporal processes are still rather experimental (Banerjee et al., 2004). The 2D space models can be39

19Walvoort and de Gruijter (2001), for example, already developed a compositional solution for ordinary kriging that will enforce
estimated values to sum to unity at all locations.
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extended to the time domain, which leads to spatio-temporal geostatistics (Kyriakidis and Journel, 1999). 1

The universal kriging model (Eq.2.1.1) then modifies to: 2

Z(s, t) = m(s, t) + ε′(s, t) + ε′′ (2.5.1)

3

where ε′(s, t) is the spatio-temporally autocorrelated residual for every (s, t) ∈ S × T , while m(s, t), the 4

deterministic component of the model, can be estimated using e.g. (Fassó and Cameletti, 2009): 5

m(s, t) = q(s, t) · β +K(s) · yt +ω(s, t) (2.5.2)

6

where q is a matrix of covariates available at all s, t locations, yt is a component of a target variable that is 7

constant in space (global trend), K(s) is a matrix of coefficients, andω(s, t) is the spatial small-scale component 8

(white noise in time) correlated over space. 9

A possible but tricky simplification of the space-time models is to consider time to be third dimension of 10

space. In that case, spatio-temporal interpolation follows the same interpolation principle as explained in 11

Eq.(1.1.2), except that here the variograms are estimated in three dimensions (two-dimensional position x 12

and y and ‘position’ in time). From the mathematical aspect, the extension from the static 2D interpolation 13

to the 3D interpolation is then rather simple. Regression modeling can be simply extended to a space-time 14

model by adding time as a predictor. For example, a spatio-temporal regression model for interpolation of land 15

surface temperature (see further §2.9.2) would look like this: 16

LST(s0, t0) = b0 + b1 ·DEM(s0) + b2 · LAT(s0) + b3 ·DISTC(s0) + b4 · LSR(s0, t0)

+ b5 · SOLAR(s0, t0) + b6 · cos
�

[t0 −φ] ·
π

180

�

; ∆t = 1 day
(2.5.3)

17

Fig. 2.10: Extension of a 2D prediction model to the space-time
domain. Note that in the space-time cube, the amount of pixels
needed to store the data exponentially increases as a function of:
width × height × number of predictors × number of time intervals.

where DEM is the elevation map, LAT is the 18

map showing distance from the equator, DISTC 19

is the distance from the coast line, LSR is the 20

land surface radiation from natural or man- 21

made objects, SOLAR is the direct solar inso- 22

lation for a given cumulative Julian day t ∈ 23

(0,+∞), cos(t) is a generic function to ac- 24

count for seasonal variation of values and φ 25

is the phase angle20. DEM, LAT, DISTC are 26

temporally-constant predictors, while surface 27

radiation and solar insolation maps need to be 28

provided for each time interval used for data 29

fitting. 30

The residuals from this regression model 31

can then be analyzed for (spatio-temporal) 32

auto-correlation. In gstat, extension from 2D 33

to 3D variograms is possible by extending the 34

variogram parameters: for 3D space-time vari- 35

ograms five values should be given in the form 36

anis = c(p,q,r,s,t), where p is the angle 37

for the principal direction of continuity (mea- 38

sured in degrees, clockwise from y , in direction 39

of x), q is the dip angle for the principal di- 40

rection of continuity (measured in positive de- 41

grees up from horizontal), r is the third rota- 42

tion angle to rotate the two minor directions 43

20A time delay from the coldest day.
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around the principal direction defined by p and q21 (see Fig. 1.11). A positive angle acts counter-clockwise1

while looking in the principal direction.2

Once we have fitted the space-time variogram, we can run regression-kriging to estimate the values at 3D3

locations. In practice, we only wish to produce maps for a given time interval (t0=constant), i.e. to produce4

2D-slices of values in time (Fig. 2.10). Once we have produced a time-series of predictions, we can analyze5

the successive time periods and run various types of time-series analysis. This will help us detect temporal6

trends spatially and extract informative images about the dynamics of the feature of interest.7

Note that, in order to yield accurate predictions using spatio-temporal techniques, dense sampling in both8

space and time is required. This means that existing natural resource surveys that have little to no repetition in9

time (�10 repetitions in time) cannot be adopted. Not to mention the computational complexity as the maps10

of predictors now multiply by the amount of time intervals. In addition, estimation of the spatio-temporal11

variograms will often be a cumbersome because we need to fit space-time models, for which we might not12

have enough space-time observations. A review of spatio-temporal models, i.e. dynamic linear state-space13

models, and some practical suggestions how to analyze such data and fit spatially varying coefficients can be14

followed in Banerjee et al. (2004, §8).15

A specific extension of the general model from Eq.(2.5.1) is to estimate the deterministic part of variation16

by using process-based (simulation) models, which are often based on differential equations. In this case an17

environmental variable is predicted from a set of environmental predictors incorporated in a dynamic model18

(Eq.1.3.12):19

Z(s, t) = fs,c,r,p,a(t) + ε
′(s, t) + ε′′ (2.5.4)

20

where s, c, r, p, a are the input (zero-stage) environmental conditions and f is a mathematical deterministic21

function that can be used to predict the values for a given space-time position. This can be connected with the22

Einstein’s assumption that the Universe is in fact a trivial system that can be modeled and analyzed using “a23

one–dimensional differential equation — in which everything is a function of time”22. Some examples of op-24

erational soil-landscape process-based models are given by Minasny and McBratney (2001) and Schoorl et al.25

(2002). In vegetation science, for example, global modeling has proven to be very efficient for explanation of26

the actual distribution of vegetation and of global changes (Bonan et al., 2003). Integration of environmental27

process-based models will soon lead to development of a global dynamic model of environmental systems that28

would then provide solutions for different multipurpose national or continental systems.29

Fassó and Cameletti (2009) recently proposed hierarchical models as a general approach for spatio-temporal30

problems, including dynamical mapping, and the analysis of the outputs from complex environmental model-31

ing chains. The hierarchical models are a suitable solution to spatio-temporal modeling because they make it32

possible to define the joint dynamics and the full likelihood; the maximum likelihood estimation can be further33

simplified by using Expectation-Maximization algorithm. The basis of this approach is the classical two-stage34

hierarchical state-space model (Fassó and Cameletti, 2009):35

Zt = qt · β +K · yt + et (2.5.5)

yt = G · yt−1 +ηt (2.5.6)

36

where yt is modeled as the autoregressive process, G is the transition matrix and ηt is the innovation error. If37

all parameters are known, the unobserved temporal process yt can be estimated for each time point t using38

e.g. Kalman filter or Kalman smoother. Such process-based spatio-temporal models are still experimental and39

it make take time until their semi-automated software implementations appear in R.40

2.6 Species Distribution Modeling using regression-kriging41

The key inputs to a Species Distribution Model (SDM) are: the inventory (population) of animals or plants42

consisting of a total of N individuals (a point pattern X =
�

si
	N

1 ; where si is a spatial location of individual43

21http://www.gstat.org/manual/node20.html
22Quote by James Peebles, Princeton, 1990; published in “God’s Equation: Einstein, Relativity, and the Expanding Universe” by Amir D.

Aczel.

http://www.gstat.org/manual/node20.html
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animal or plant; Fig. 1.3a), covering some area BHR ⊂ R2 (where HR stands for home-range and R2 is the 1

Euclidean space), and a list of environmental covariates/predictors (q1, q2, . . . qp) that can be used to explain 2

spatial distribution of a target species. In principle, there are two distinct groups of statistical techniques that 3

can be used to map the realized species’ distribution: (a) the point pattern analysis techniques, such as kernel 4

smoothing, which aim at predicting density of a point process (Fig. 2.11a); and (b) statistical, GLM-based, 5

techniques that aim at predicting the probability distribution of occurrences (Fig. 2.11c). Both approaches are 6

explained in detail in the following sections. 7

Fig. 2.11: Examples of (simulated) species distribution maps produced using common statistical models.

Species’ density estimation using kernel smoothing and covariates 8

Spatial density (ν; if unscaled, also known as “spatial intensity”) of a point pattern (ignoring the time dimen- 9

sion) is estimated as: 10

E [N(X∩ B)] =

∫

B

ν(s)ds (2.6.1)

11
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In practice, it can be estimated using e.g. a kernel estimator (Diggle, 2003; Baddeley, 2008):1

ν(s) =
n
∑

i=1

κ ·
�

s− si





�

· b(s) (2.6.2)

2

where ν(s) is spatial density at location s, κ(s) is the kernel (an arbitrary probability density), si is location of3

an occurrence record,


s− si



 is the distance (norm) between an arbitrary location and observation location,4

and b(s) is a border correction to account for missing observations that occur when s is close to the border5

of the region (Fig. 2.11a). A common (isotropic) kernel estimator is based on a Gaussian function with mean6

zero and variance 1:7

bν(s) =
1

H2 ·
n
∑

i=1

1
p

2π
· e−

‖s−si‖2

2 · b(s) (2.6.3)

8

The key parameter for kernel smoothing is the bandwidth (H) i.e. the smoothing parameter, which can be9

connected with the choice of variogram in geostatistics. The output of kernel smoothing is typically a map10

(raster image) consisting of M grid nodes, and showing spatial pattern of species’ clustering.11

Spatial density of a point pattern can also be modeled using a list of spatial covariates q’s (in ecology, we12

call this environmental predictors), which need to be available over the whole area of interest B. For example,13

using a Poisson model (Baddeley, 2008):14

logν(s) = logβ0 + log q1(s) + . . .+ log qp(s) (2.6.4)

15

where log transformation is used to account for the skewed distribution of both density values and covariates;16

p is the number of covariates. Models with covariates can be fitted to point patterns e.g. in the spatstat17

package23. Such point pattern–covariates analysis is commonly run only to determine i.e. test if the covariates18

are correlated with the feature of interest, to visualize the predicted trend function, and to inspect the spatial19

trends in residuals. Although statistically robust, point pattern–covariates models are typically not considered20

as a technique to improve prediction of species’ distribution. Likewise, the model residuals are typically not21

used for interpolation purposes.22

Predicting species’ distribution using ENFA and GLM (pseudo-absences)23

An alternative approach to spatial prediction of species’ distribution using occurrence-only records and envi-24

ronmental covariates is the combination of ENFA and regression modeling. In general terms, predictions are25

based on fitting a GLM:26

E(P) = µ= g−1(q · β) (2.6.5)

27

where E(P) is the expected probability of species occurrence (P ∈ [0,1]; Fig. 2.11c), q·β is the linear regression28

model, and g is the link function. A common link function used for SDM with presence observations is the29

logit link function:30

g(µ) = µ+ = ln
�

µ

1−µ

�

(2.6.6)

31

and the Eq.(2.6.5) becomes logistic regression (Kutner et al., 2004).32

The problem of running regression analysis with occurrence-only observations is that we work with 1’s33

only, which means that we cannot fit any model to such data. To account for this problem, species distribution34

modelers (see e.g. Engler et al. (2004); Jiménez-Valverde et al. (2008) and Chefaoui and Lobo (2008)) typi-35

cally insert the so-called “pseudo-absences” — 0’s simulated using a plausible models, such as Environmental36

23This actually fits the maximum pseudolikelihood to a point process; for more details see Baddeley (2008).



2.6 Species Distribution Modeling using regression-kriging 49

Niche Factor Analysis (ENFA), MaxEnt or GARP (Guisan and Zimmermann, 2000), to depict areas where a 1

species is not likely to occur. ENFA is a type of factor analysis that uses observed presences of a species to 2

estimate which are the most favorable areas in the feature space, and then uses this information to predict 3

the potential distribution of species for all locations (Hirzel and Guisan, 2002). The difference between ENFA 4

and the Principal Component Analysis is that the ENFA factors have an ecological meaning. ENFA results in 5

a Habitat Suitability Index (HSI∈ [0− 100%]) — by depicting the areas of low HSI, we can estimate where 6

the species is very unlikely to occur, and then simulate a new point pattern that can be added to the occur- 7

rence locations to produce a ‘complete’ occurrences+absences data set. Once we have both 0’s and 1’s, we 8

can fit a GLM as shown in Eq.(2.6.5) and generate predictions (probability of occurrence) using geostatistical 9

techniques as described in e.g. Gotway and Stroup (1997). 10

Predicting species’ density using ENFA and logistic regression-kriging 11

Point pattern analysis, ENFA and regression-kriging can be successfully combined using the approach explained 12

in Hengl et al. (2009b). First, we will assume that our input point pattern represents only a sample of the whole 13

population (XS =
�

si
	n

1), so that the density estimation needs to be standardized to avoid biased estimates. 14

Second, we will assume that pseudo-absences can be generated using both information about the potential 15

habitat (HSI) and geographical location of the occurrence-only records. Finally, we focus on mapping the 16

actual count of individuals over the grid nodes (realized distribution), instead of mapping the probability of 17

species’ occurrence. 18

Spatial density values estimated by kernel smoothing are primarily controlled by the bandwidth size (Bi- 19

vand et al., 2008). The higher the bandwidth, the lower the values in the whole map; likewise, the higher 20

the sampling intensity (n/N), the higher the spatial density, which eventually makes it difficult to physically 21

interpret mapped values. To account for this problem, we propose to use relative density (νr : B → [0, 1]) 22

expressed as the ratio between the local and maximum density at all locations: 23

νr(s) =
ν(s)

max {ν(s)|s ∈ B}M1
(2.6.7)

24

An advantage of using the relative density is that the values are in the range [0,1], regardless of the 25

bandwidth and sample size (n/N). Assuming that our sample XS is representative and unbiased, it can be 26

shown that νr(s) is an unbiased estimator of the true spatial density (see e.g. Diggle (2003) or Baddeley 27

(2008)). In other words, regardless of the sample size, by using relative intensity we will always be able to 28

produce an unbiased estimator of the spatial pattern of density for the whole population (see further Fig. 8.4). 29

Furthermore, assuming that we actually know the size of the whole population (N), by using predicted 30

relative density, we can also estimate the actual spatial density (number of individuals per grid node; as shown 31

in Fig. 2.11b): 32

ν(s) = νr(s) ·
N

∑M
j=1 νr(s)

;
M
∑

j=1

ν(s) = N (2.6.8)

33

which can be very useful if we wish to aggregate the species’ distribution maps over some polygons of interest, 34

e.g. to estimate the actual counts of individuals. 35

Our second concern is the insertion of pseudo-absences. Here, two questions arise: (1) how many pseudo- 36

absences should we insert? and (b) where should we locate them? Intuitively, it makes sense to generate 37

the same number of pseudo-absence locations as occurrences. This is also supported by the statistical theory 38

of model-based designs, also known as “D-designs”. For example, assuming a linear relationship between 39

density and some predictor q, the optimal design that will minimize the prediction variance is to put half of 40

observation at one extreme and other at other extreme. All D-designs are in fact symmetrical, and all advocate 41

higher spreading in feature space (for more details about D-designs, see e.g. Montgomery (2005)), so this 42

principle seems logical. After the insertion of the pseudo-absences, the extended observations data set is: 43

Xf =
¦

�

si
	n

1 ,
�

s∗ i
	n∗

1

©

; n= n∗ (2.6.9)

44
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where s∗ i are locations of the simulated pseudo-absences. This is not a point pattern any more because now1

also quantitative values — either relative densities (νr(si)) or indicator values — are attached to locations2

(µ(si) = 1 and µ(s∗ i) = 0).3

The remaining issue is where and how to allocate the pseudo-absences? Assuming that a spreading of4

species in an area of interest is a function of the potential habitat and assuming that the occurrence locations5

on the HSI axis will commonly be skewed toward high values (see further Fig. 8.8 left; see also Chefaoui and6

Lobo (2008)), we can define the probability distribution (τ) to generate the pseudo-absence locations as e.g.:7

τ(s∗) = [100%−HSI(s)]2 (2.6.10)

8

where the square term is used to insure that there are progressively more pseudo-absences at the edge of9

low HSI. This way also the pseudo-absences will approximately follow Poisson distribution. In this paper we10

propose to extend this idea by considering location of occurrence points in geographical space also (see also an11

interesting discussion on the importance of geographic extent for generation of pseudo-absences by VanDerWal12

et al. (2009)). The Eq.(2.6.10) then modifies to:13

τ(s∗) =
�

dR(s) + (100%−HSI(s))
2

�2

(2.6.11)

14

where dR is the normalized distance in the range [0, 100%], i.e. the distance from the observation points (X)15

divided by the maximum distance. By using Eq.(2.6.11) to simulate the pseudo-absence locations, we will16

purposively locate them both geographically further away from the occurrence locations and in the areas of17

low HSI (unsuitable habitat).18

After the insertion of pseudo-absences, we can attach to both occurrence-absence locations values of esti-19

mated relative density, and then correlate this with environmental predictors. This now becomes a standard20

geostatistical point data set, representative of the area of interest, and with quantitative values attached to21

point locations (see further Fig. 8.10d). Recall from Eq.(2.6.7) that we attach relative intensities to obser-22

vation locations. Because these are bounded in the [0,1] range, we can use the logistic regression model to23

make predictions. Thus, the relative density at some new location (s0) can be estimated using:24

bν+r (s0) =
�

1+ exp
�

−βT · q0

��−1
(2.6.12)

25

where β is a vector of fitted regression coefficients, q0 is a vector of predictors (maps) at a new location, and26

bν+r (s0) is the predicted logit-transformed value of the relative density. Assuming that the sampled intensities27

are continuous values in the range νr ∈ (0, 1), the model in Eq.(2.6.12) is in fact a liner model, which allows28

us to extend it to a more general linear geostatistical model such as regression-kriging. This means that the29

regression modeling is supplemented with the modeling of variograms for regression residuals, which can then30

be interpolated and added back to the regression estimate (Eq.2.1.4):31

bν+r (s0) = qT
0 · β̂GLS +δ

T
0 ·
�

ν+r − q · β̂GLS
�

(2.6.13)

32

where δ0 is the vector of fitted weights to interpolate the residuals using ordinary kriging. In simple terms,33

logistic regression-kriging consists of five steps:34

(1.) convert the relative intensities to logits using Eq.(2.6.6); if the input values are equal to 0/1, replace35

with the second smallest/highest value;36

(2.) fit a linear regression model using Eq.(2.6.12);37

(3.) fit a variogram for the residuals (logits);38

(4.) produce predictions by first predicting the regression-part, then interpolate the residuals using ordinary39

kriging; finally add the two predicted trend-part and residuals together (Eq.2.6.13)40

(5.) back-transform interpolated logits to the original (0, 1) scale by:41
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bνr(s0) =
ebν
+
r (s0)

1+ ebν+r (s0)
(2.6.14)

1

After we have mapped relative density over area of interest, we can also estimate the actual counts using 2

the Eq.(2.6.8). This procedure is further elaborated in detail in chapter 8. 3

2.7 Modeling of topography using regression-kriging 4

Fig. 2.12: Conceptual aspects of modeling topography using geo-
statistics. A cross section showing the true topography and the as-
sociated uncertainty: (a) constant, global uncertainty model and
(b) spatially variable uncertainty; (c) estimation of the DEM errors
using precise height measurements.

A Digital Elevation Model (DEM) is a digi- 5

tal representation of the land surface — the 6

major input to quantitative analysis of topog- 7

raphy, also known as Digital Terrain Analy- 8

sis or Geomorphometry (Wilson and Gallant, 9

2000; Hengl and Reuter, 2008). Typically, a 10

DEM is a raster map (an image or an eleva- 11

tion array) that, like many other spatial fea- 12

tures, can be efficiently modeled using geo- 13

statistics. The geostatistical concepts were in- 14

troduced in geomorphometry by Fisher (1998) 15

and Wood and Fisher (1993), then further elab- 16

orated by Kyriakidis et al. (1999), Holmes et al. 17

(2000) and Oksanen (2006). An important 18

focus of using geostatistics to model topogra- 19

phy is assessment of the errors in DEMs and 20

analysis of effects that the DEM errors have 21

on the results of spatial modeling. This is the 22

principle of error propagation that commonly 23

works as follows: simulations are generated 24

from point-measured heights to produce mul- 25

tiple equiprobable realizations of a DEM of an 26

area; a spatial model is applied m times and 27

output maps then analyzed for mean values 28

and standard deviations per pixel; the results 29

of analysis can be used to quantify DEM accu- 30

racy and observe impacts of uncertain informa- 31

tion in various parts of the study area (Hunter 32

and Goodchild, 1997; Heuvelink, 1998; Temme 33

et al., 2008). 34

So far, DEMs have been modeled by us- 35

ing solely point-sampled elevations. For exam- 36

ple, ordinary kriging is used to generate DEMs 37

(Mitas and Mitasova, 1999; Lloyd and Atkin- 38

son, 2002); conditional geostatistical simula- 39

tions are used to generate equiprobable realiza- 40

tions of DEMs (Fisher, 1998; Kyriakidis et al., 41

1999). In most studies, no explanatory infor- 42

mation on topography is employed directly in the geostatistical modeling. Compared to the approach of 43

Hutchinson (1989, 1996) where auxiliary maps of streams are often used to produce hydrologically-correct 44

DEMs, the geostatistical approach to modeling of topography has often been limited to analysis of point- 45

sampled elevations. 46

2.7.1 Some theoretical considerations 47

DEMs are today increasingly produced using automated (mobile GPS) field sampling of elevations or airborne 48

scanning devices (radar or LiDAR-based systems). In the case elevations are sampled at sparsely-located points, 49
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a DEM can be generated using geostatistical techniques such as ordinary kriging (Wood and Fisher, 1993;1

Mitas and Mitasova, 1999). The elevation at some grid node (s0) of the output DEM can be interpolated using2

ordinary kriging (Eq.1.3.2); the same technique can be used to produce simulated DEMs (see section 2.4).3

Direct simulation of DEMs using the sampled elevations is discussed in detail by Kyriakidis et al. (1999).4

The use of kriging in geomorphometry to generate DEMs has been criticized by many (Wood and Fisher,5

1993; Mitas and Mitasova, 1999; Li et al., 2005b), mainly because it leads to many artifacts, it oversmooths6

elevations and it is very sensitive to sampling density and local extreme values. So far, splines have been used7

in geomorphometry as a preferred technique to generate DEMs or to filter local errors (Mitasova et al., 2005).8

More recently, Hengl et al. (2008) demonstrated that regression-kriging can be used to employ auxiliary maps,9

such as maps of drainage patterns, land cover and remote sensing-based indices, directly in the geostatistical10

modeling of topography. Details are now discussed in the succeeding sections.11

If additional, auxiliary maps (drainage network, water bodies, physiographic break-lines) are available, a12

DEM can be generated from the point-measured elevations using the regression-kriging model (Eq.2.1.4). The13

biggest advantage of using auxiliary maps is a possibility to more precisely model uncertainty of the sampled14

elevations and analyze which external factors cause this variability. Whereas, in pure statistical Monte Carlo15

approach where we work with global, constant parameters (Fig. 2.12a), in the case of geostatistical modeling,16

the DEM uncertainty can be modeled with a much higher level of detail (Fig. 2.12b).17

In the case a DEM is obtained from an airborne or satellite-based scanning mission (radar, LiDAR or stereo-18

scopic images), elevations are already available over the whole area of interest. Geostatistics is then used to19

analyze inherent errors in the DEM images (Grohmann, 2004), filter local errors caused by physical limita-20

tions of the instrument (Lloyd and Atkinson, 2002; Evans and Hudak, 2007), and eventually cluster the area21

according to their statistical properties (Lloyd and Atkinson, 1998).22

Geostatistical simulation of complete elevation data is somewhat more complicated than with point data.23

At the moment, the simulations of DEM images are most commonly obtained by simulating error surfaces24

derived from additional field-control samples (Fig. 2.12c). The elevations measured at control points are used25

to assess the errors. The point map of DEM errors can then be used to generate equiprobable error surfaces,26

which are then added to the original DEM to produce an equiprobable realization of a DEM (Hunter and27

Goodchild, 1997; Holmes et al., 2000; Endreny and Wood, 2001; Temme et al., 2008). From a statistical28

perspective, a DEM produced directly by using scanning devices (SRTM, LiDAR) consists of three components:29

Z∗(s) the deterministic component, ε′(s) the spatially correlated random component, and ε′′ is the pure noise,30

usually the result of the measurement error. In raster-GIS terms, we can decompose a DEM into two grids: (1)31

the deterministic DEM and (2) the error surface. If precise point-samples of topography (e.g. highly precise32

GPS measurements) are available, they can be used to estimate the errors (Fig. 2.12c):33

e(si) = z∗REF(si)− Z(si); E {e(s)}= 0 (2.7.1)

34

The measured errors at point locations can also be manipulated using geostatistics to generate the error35

surface:36

e(SIM)(s0) = E
�

ε|e(si),γe(h)
	

(2.7.2)

37

The simulated error surface can then be added to the deterministic DEM to produce an equiprobable38

realization of a DEM:39

z(SIM)(s j) = z∗(s j) + e(SIM)(s j) (2.7.3)

40

An obvious problem with this approach is that the deterministic DEM (z∗(s j)) is usually not available, so41

that the input DEM is in fact used to generate simulations, which leads to (see e.g. Holmes et al. (2000);42

Temme et al. (2008)):43

z(SIM)(s j) = z(s j) + e(SIM)(s j)

= z∗(s j) + ε
′(s j) + ε

′′ + e(SIM)(s j)
(2.7.4)
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which means that the simulated error surface and the inherent error component, at some locations, will double, 1

and at others will annul each other. However, because the inherent error and the simulated error are in fact 2

independent, the mean of the summed errors will be close to zero (unbiased simulation), but the standard 3

deviation of the error component will be on average 40% larger. Hence a DEM simulated using Eq.(2.7.3) 4

will be much noisier than the original DEM. The solution to this problem is to substitute the deterministic 5

DEM component with a smoother DEM, e.g. a DEM derived from contour lines digitized from a finer-scale 6

topo-map. As an alternative, the deterministic DEM component can be prepared by smoothing the original 7

DEM i.e. filtering it for known noise and systematic errors (see e.g. Selige et al. (2006)). 8

2.7.2 Choice of auxiliary maps 9

The spatially correlated error component will also often correlate with the explanatory information (Oksanen, 10

2006). For example, in traditional cartography, it is known that the error of measuring elevations is primarily 11

determined by the complexity of terrain (the slope factor), land cover (density of objects) and relative visibility 12

(the shadow effect). Especially in the cases where the DEMs are produced through photogrammetric meth- 13

ods, information about the terrain shading can be used to estimate the expected error of measuring heights. 14

Similarly, a SRTM DEM will show systematic errors in areas of higher canopy and smaller precision in areas 15

which are hidden or poorly exposed to the scanning device (Hengl and Reuter, 2008, p.79-80). This opens 16

a possibility to also use the regression-kriging model with auxiliary maps to produce a more realistic error 17

surface (Hengl et al., 2008). 18

There are three major groups of auxiliary maps of interest to DEM generation: 19

(1.) Hydrological maps: 20

stream line data; 21

water stagnation areas (soil-water content images); 22

seashore and lakes border lines; 23

(2.) Land cover maps: 24

canopy height; 25

Leaf Area Index; 26

land cover classes; 27

(3.) Geomorphological maps: 28

surface roughness maps; 29

physiographic breaks; 30

ridges and terraces; 31

A lot of topography-connected information can be derived from remote sensing multi- and hyper-spectral 32

images, such as shading-based indices, drainage patterns, ridge-lines, topographic breaks. All these can be 33

derived using automated (pattern recognition) techniques, which can significantly speed up processing for 34

large areas. 35

Many auxiliary maps will mutually overlap in information and value. Ideally, auxiliary maps used to 36

improve generation of DEMs should be only GIS layers produced independently from the sampled elevations 37

— e.g. remotely sensed images, topographic features, thematic maps etc. Where this is not possible, auxiliary 38

maps can be derived from an existing DEM, provided that this DEM is generated using independent elevation 39

measurements. Care needs to be taken not to employ auxiliary maps which are only indirectly or accidentally 40

connected with the variations in topography. Otherwise unrealistic simulations can be generated, of even 41

poorer quality than if only standard DEM generation techniques are used (Hengl et al., 2008). 42
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2.8 Regression-kriging and sampling optimization algorithms1

Understanding the concepts of regression-kriging is not only important to know how to generate maps, but2

also to know how to prepare a sampling plan and eventually minimize the survey costs. Because the costs3

of the field survey are usually the biggest part of the survey budget, this issue will become more and more4

important in the coming years. So far, two main groups of sampling strategies have been commonly utilized5

for the purpose of environmental mapping (Guttorp, 2003):6

Regular sampling — This has the advantage that it systematically covers the area of interest (maximized7

mean shortest distance), so that the overall prediction variance is usually minimized24. The disadvantage8

of this technique is that it misrepresents distances smaller than the grid size (short range variation).9

Randomized sampling — This has the advantage that it represents all distances between the points,10

which is beneficial for the variogram estimation. The disadvantage is that the spreading of the points in11

geographic space is lower than in the case of regular sampling, so that the overall precision of the final12

maps will often be lower.13

None of two strategies is universally applicable so that often their combination is recommended: e.g. put14

half of the points using regular and half using a randomized strategy. Both random and regular sampling15

strategies belong to the group of design-based sampling. The other big group of sampling designs are the16

model-based designs. A difference between a design-based sampling (e.g. simple random sampling) and the17

model-based design is that, in the case of the model-based design, the model is defined and commonly a single18

optimal design that maximizes/minimizes some criteria can be produced.19

In the case of regression-kriging, there are much more possibilities to improve sampling than by using20

design-based sampling. First, in the case of preparing a sampling design for new survey, the samples can be21

more objectively located by using some response surface design (Hengl et al., 2004b), including the Latin22

hypercube sampling (Minasny and McBratney, 2006). The Latin hypercube sampling will ensure that all23

points are well-placed in the feature space defined by the environmental factors — these will later be used24

as predictors — and that the extrapolation in feature space is minimized. Second, once we have collected25

samples and estimated the regression-kriging model, we can then optimize sampling and derive (1) number26

of required additional observations and (2) their optimal location in both respective spaces. This leads to a27

principle of the two-stage25 model-based sampling (Fig. 2.13).28

The two-stage sampling is a guarantee of minimization of the survey costs. In the first phase, the surveyors29

will produce a sampling plan with minimum survey costs — just to have enough points to get a ‘rough’ estimate30

of the regression-kriging model. Once the model is approximated (correlation and variogram model), and31

depending on the prescribed accuracy (overall prediction variance), the second (additional) sampling plan32

can be generated. Now we can re-estimate the regression-kriging model and update the predictions so that33

they fit exactly our prescribed precision requirements. Brus and Heuvelink (2007) tested the use of simulated34

annealing to produce optimal designs based on the regression-kriging model, and concluded that the resulting35

sampling plans will lead to hybrid patterns showing spreading in both feature and geographical space. An36

R package intamap26 (procedures for automated interpolation) has been recently released that implements37

such algorithms to run sampling optimization. The interactive version of the intamap package allows users to38

create either new sampling networks with spatial coverage methods, or to optimally allocate new observations39

using spatial simulated annealing (see results for the meuse case study in Fig. 2.13).40

Smarter allocation of the points in the feature and geographic space often proves that equally precise maps41

could have been produced with much less points than actually collected. This might surprise you, but it has a42

strong theoretical background. Especially if the predictors are highly correlated with the target variable and43

if this correlation is close to linear, there is really no need to collect many samples in the study area. In order44

to produce precise predictions, it would be enough if we spread them around extremes of the feature space45

and possibly maximized their spreading in the area of interest (Hengl et al., 2004b). Of course, number of46

sampling points is mainly dictated by our precision requirements, so that more accurate (low overall precision47

variance) and detailed (fine cell size) maps of environmental variables will often require denser sampling48

densities.49

24If ordinary kriging is used to generate predictions.
25Ideally, already one iteration of additional sampling should guarantee map of required accuracy/quality. In practice, also the estima-

tion of model will need to be updated with additional predictors, hence more iterations can be anticipated.
26http://intamap.org

http://intamap.org
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Fig. 2.13: Example of the two-stage model-based sampling: + — 50 first stage samples (transects); o — 100 new samples
allocated using the model estimated in the first stage (optimized allocation produced using Spatial Simulated Annealing
implemented in the intamapInteractive package). In the case of low correlation with auxiliary maps (left), new sampling
design shows have higher spreading in the geographical space; if the correlation with predictors is high (right), then the
new sampling design follows the extremes of the features space.

2.9 Fields of application 1

With the rapid development of remote sensing and geoinformation science, natural resources survey teams 2

are now increasingly creating their products (geoinformation) using ancillary data sources and computer pro- 3

grams — the so-called direct-to-digital approach. For example, sampled concentrations of heavy metals can 4

be mapped with higher detail if information about the sources of pollution (distance to industrial areas and 5

traffic or map showing the flooding potential) is used. In the following sections, a short review of the groups 6

of application where regression-kriging has shown its potential is given. 7

2.9.1 Soil mapping applications 8

In digital soil mapping, soil variables such as pH, clay content or concentration of a heavy metal, are increas- 9

ingly mapped using the regression-kriging framework: the deterministic part of variation is dealt with maps 10

of soil forming factors (climatic, relief-based and geological factors) and the residuals are dealt with kriging 11

(McBratney et al., 2003). The same techniques is now used to map categorical variables (Hengl et al., 2007b). 12

A typical soil mapping project based on geostatistics will also be demonstrated in the following chapter of this 13

handbook. This follows the generic framework for spatial prediction set in Hengl et al. (2004a) and applicable 14

also to other environmental and geosciences (Fig. 2.14). 15

In geomorphometry, auxiliary maps, such as maps of drainage patterns, land cover and remote sensing- 16

based indices, are increasingly used for geostatistical modeling of topography together with point data sets. 17

Auxiliary maps can help explain spatial distribution of errors in DEMs and regression-kriging can be used to 18

generate equiprobable realizations of topography or map the errors in the area of interest (Hengl et al., 2008). 19

Such hybrid geostatistical techniques will be more and more attractive for handling rich LiDAR and radar- 20

based topographic data, both to analyze their inherent geostatistical properties and generate DEMs fit-for-use 21

in various environmental and earth science applications. 22
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Fig. 2.14: A generic framework for digital soil mapping based on regression-kriging. After Hengl et al. (2007b).

2.9.2 Interpolation of climatic and meteorological data1

Regression-kriging of climatic variables, especially the ones derived from DEMs, is now favoured in many2

climatologic applications (Jarvis and Stuart, 2001; Lloyd, 2005). DEMs are most commonly used to adjust3

measurements at meteorological stations to local topographic conditions. Other auxiliary predictors used4

range from distance to sea, meteorological images of land surface temperature, water vapor, short-wave radi-5

ation flux, surface albedo, snow Cover, fraction of vegetation cover (see also section 4). In many cases, real6

deterministic models can be used to make predictions, so that regression-kriging is only used to calibrate the7

values using the real observations (D’Agostino and Zelenka, 1992, see also Fig. 2.3). The exercise in chap-8

ter 11 demonstrates the benefits of using the auxiliary predictors to map climatic variables. In this case the9

predictors explained almost 90% of variation in the land surface temperatures measured at 152 stations. Such10

high R-square allows us to extrapolate the values much further from the original sampling locations, which11

would be completely inappropriate to do by using ordinary kriging. The increase of the predictive capabilities12

using the explanatory information and regression-kriging has been also reported by several participants of the13

Conference on spatial interpolation in climatology and meteorology (Szalai et al., 2007).14

Interpolation of climatic and meteorological data is also interesting because the explanatory (meteorolog-15

ical images) data are today increasingly collected in shorter time intervals so that time-series of images are16

available and can be used to develop spatio-temporal regression-kriging models. Note also that many meteo-17

rological prediction models can generate maps of forecasted conditions in the close-future time, which could18

then again be calibrated using the actual measurements and RK framework.19

2.9.3 Species distribution modeling20

Geostatistics is considered to be one of the four spatially-implicit group of techniques suited for species dis-21

tribution modeling — the other three being: autoregressive models, geographically weighted regression and22

parameter estimation models (Miller et al., 2007). Type of technique suitable for analysis of species (oc-23
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currence) records is largely determined by the species’ biology. There is a distinct difference between field 1

observation of animal and plant species and measurements of soil or meteorological variables. Especially the 2

observations of animal species asks for high sampling densities in temporal dimension. If the biological species 3

are represented with quantitative composite measures (density, occurrence, biomass, habitat category), such 4

measures are fit for use with standard spatio-temporal geostatistical tools. Some early examples of using geo- 5

statistics with the species occurrence records can be found in the work of Legendre and Fortin (1989) and 6

Gotway and Stroup (1997). Kleinschmidt et al. (2005) uses regression-kriging method, based on the Gen- 7

eralized mixed model, to predict the malaria incidence rates in South Africa. Miller (2005) uses a similar 8

principle (predict the regression part, analyze and interpolate residuals, and add them back to predictions) to 9

generate vegetation maps. Miller et al. (2007) further provide a review of predictive vegetation models that 10

incorporate geographical aspect into analysis. Pure interpolation techniques will often outperform niche based 11

models (Bahn and McGill, 2007), although there is no reason not to combine them. Pebesma et al. (2005) 12

demonstrates that geostatistics is fit to be used with spatio-temporal species density records. §8 shows that 13

even occurrence-only records can be successfully analyzed using geostatistics i.e. regression-kriging. 14
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Fig. 2.15: Schematic example of a geo-processing service to automate extraction of species distribution maps using GBIF
occurrence records and gridded predictors. The suitable R packages are indicated in brackets.

Fig. 2.15 shows an example of a generic automated data processing scheme to generate distribution maps 15

and similar biodiversity maps using web-data. The occurrence(-only) records can be retrieved from the Global 16

Biodiversity Information Facility27 (GBIF) Data Portal, then overlaid over number of gridded predictors (possi- 17

bly stored in a PostGIS database), a species’ prediction model can then be fitted, and results exported to some 18

GIS format / KML. Such automated mapping portals are now increasingly being used to generate up-to-date 19

species’ distribution maps. 20

27Established in 2001; today the largest international data sharing network for biodiversity.
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2.9.4 Downscaling environmental data1

Interpolation becomes down-scaling once the grid resolution in more than 50% of the area is finer than it2

should be for the given sampling density. For example, in soil mapping, one point sample should cover 1603

pixels (Hengl, 2006). If we have 100 samples and the size of the area is 10 km2, then it is valid to map soil4

variables at resolutions of 25 m (maximum 10 m) or coarser. Note that down-scaling is only valid if we have5

some auxiliary data (e.g. digital elevation model) which is of finer resolution than the effective grid resolution,6

and which is highly correlated with the variable of interest.7

If the auxiliary predictors are available at finer resolutions than the sampling intensity, regression-kriging8

can be used to downscale information. Much of recent research in the field of biogeography, for example, has9

been focusing on the down-scaling techniques (Araújo et al., 2005). Hengl et al. (2008) shows how auxiliary10

maps can be used to downscale SRTM DEMs from 90 to 30 m resolution. Pebesma et al. (2007) use various11

auxiliary maps to improve detail of air pollution predictions. For the success of downscaling procedures using12

regression-kriging, the main issue is how to locate the samples so that extrapolation in the feature space is13

minimized.14

2.10 Final notes about regression-kriging15

At the moment, there are not many contra-arguments not to replace the existing traditional soil, vegetation,16

climatic, geological and similar maps with the maps produced using analytical techniques. Note that this does17

not mean that we should abandon the traditional concepts of field survey and that surveyors are becoming18

obsolete. On the contrary, surveyors continue to be needed to prepare and collect the input data and to assess19

the results of spatial prediction. On the other hand, they are less and less involved in the actual delineation of20

features or derivation of predictions, which is increasingly the role of the predictive models.21

One such linear prediction techniques that is especially promoted in this handbook is regression-kriging22

(RK). It can be used to interpolate sampled environmental variables (both continuous and categorical) from23

large point sets. However, in spite of this and other attractive properties of RK, it is not as widely used in24

geosciences as might be expected. The barriers to widespread routine use of RK in environmental modeling25

and mapping are as follows. First, the statistical analysis in the case of RK is more sophisticated than for simple26

mechanistic or kriging techniques. Second, RK is computationally demanding28 and often cannot be run on27

standard PCs. The third problem is that many users are confused by the quantity of spatial prediction options,28

so that they are never sure which one is the most appropriate. In addition, there is a lack of user-friendly GIS29

environments to run RK. This is because, for many years GIS technologies and geostatistical techniques have30

been developing independently. Today, a border line between statistical and geographical computing is fading31

away, in which you will hopefully be more convinced in the remaining chapters of this guide.32

2.10.1 Alternatives to RK33

The competitors to RK include completely different methods that may fit certain situations better. If the34

explanatory data is of different origin and reliability, the Bayesian Maximum Entropy approach might be a35

better alternative (D’Or, 2003). There are also machine learning techniques that combine neural network36

algorithms and robust prediction techniques (Kanevski et al., 1997). Henderson et al. (2004) used decision37

trees to predict various soil parameters from large quantity of soil profile data and with the help of land surface38

and remote sensing attributes. This technique is flexible, optimizes local fits and can be used within a GIS.39

However, it is statistically suboptimal because it ignores spatial location of points during the derivation of40

classification trees. The same authors (Henderson et al., 2004, pp.394–396) further reported that, although41

there is still some spatial correlation in the residuals, it is not clear how to employ it.42

Regression-kriging must also be compared with alternative kriging techniques, such as collocated co-43

kriging, which also makes use of the explanatory information. However, collocated co-kriging is developed44

for situations in which the explanatory information is not spatially exhaustive (Knotters et al., 1995). CK also45

requires simultaneous modeling of both direct and cross-variograms, which can be time-consuming for large46

28Why does RK takes so much time? The most enduring computations are connected with derivation of distances from the new point
to all sampled points. This can be speed up by setting up a smaller search radius.
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number of covariates29. In the case where the covariates are available as complete maps, RK will generally 1

be preferred over CK, although CK may in some circumstances give superior results (D’Agostino and Zelenka, 2

1992; Goovaerts, 1999; Rossiter, 2007). In the case auxiliary point samples of covariates, in addition to 3

auxiliary raster maps, are available, regression-kriging can be combined with co-kriging: first the deterministic 4

part can be dealt with the regression, then the residuals can be interpolated using co-kriging (auxiliary point 5

samples) and added back to the estimated deterministic part of variation. 6

2.10.2 Limitations of RK 7

RK have shown a potential to become the most popular mapping technique used by environmental scientists 8

because it is (a) easy to use, and (b) it outperforms plain geostatistical techniques. However, success of 9

RK largely depends on characteristics of the case study i.e. quality of the input data. These are some main 10

consideration one should have in mind when using RK: 11

(1.) Data quality: RK relies completely on the quality of data. If the data comes from different sources and 12

have been sampled using biased or unrepresentative design, the predictions might be even worse than 13

with simple mechanistic prediction techniques. Even a single bad data point can make any regression 14

arbitrarily bad, which affects the RK prediction over the whole area. 15

(2.) Under-sampling: For regression modeling, the multivariate feature space must be well-represented in all 16

dimensions. For variogram modeling, an adequate number of point-pairs must be available at various 17

spacings. Webster and Oliver (2001, p.85) recommend at least 50 and preferably 300 points for vari- 18

ogram estimation. Neter et al. (1996) recommends at least 10 observations per predictor for multiple 19

regression. We strongly recommend using RK only for data sets with more than 50 total observations 20

and at least 10 observations per predictor to prevent over-fitting. 21

(3.) Reliable estimation of the covariance/regression model: The major dissatisfaction of using KED or RK is 22

that both the regression model parameters and covariance function parameters need to be estimated 23

simultaneously. However, in order to estimate coefficients we need to know covariance function of 24

residuals, which can only be estimated after the coefficients (the chicken-egg problem). Here, we have 25

assumed that a single iteration is a satisfactory solution, although someone might also look for other 26

iterative solutions (Kitanidis, 1994). Lark et al. (2005) recently suggested that an iterative Restricted 27

Maximum Likelihood (REML) approach should be used to provide an unbiased estimate of the vari- 28

ogram and regression coefficients. However, this approach is rather demanding for�103 point data sets 29

because for each iteration, an n× n matrix is inverted (Minasny and McBratney, 2007). 30

(4.) Extrapolation outside the sampled feature space: If the points do not represent feature space or represent 31

only the central part of it, this will often lead to poor estimation of the model and poor spatial prediction. 32

For this reason, it is important that the points be well spread at the edges of the feature space and that 33

they be symmetrically spread around the center of the feature space (Hengl et al., 2004b). Assessing the 34

extrapolation in feature space is also interesting to allocate additional point samples that can be used 35

to improve the existing prediction models. This also justifies use of multiple predictors to fit the target 36

variable, instead of using only the most significant predictor or first principal component, which if, for 37

example, advocated by the Isatis development team (Bleines et al., 2004). 38

(5.) Predictors with uneven relation to the target variable: Auxiliary maps should have a constant physical 39

relationship with the target variable in all parts of the study area, otherwise artifacts will be produced. 40

An example is a single NDVI as a predictor of topsoil organic matter. If an agricultural field has just 41

been harvested (low NDVI), the prediction map will (incorrectly) show very low organic matter content 42

within the crop field. 43

(6.) Intermediate-scale modeling: RK has not been adapted to fit data locally, with arbitrary neighborhoods for 44

the regression as can be done with kriging with moving window (Walter et al., 2001). Many practitioners 45

would like to adjust the neighborhood to fit their concepts of the scale of processes that are not truly 46

global (across the whole study area) but not completely local either. 47

29Co-kriging requires estimation of p + 1 variograms, plus
�

p · (p+ 1)
�

/2 cross-variograms, where the p is the number of predictors
(Knotters et al., 1995).
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(7.) Data over-fitting problems: Care needs to be taken when fitting the statistical models — today, complex1

models and large quantities of predictors can be used so that the model can fit the data almost 100%.2

But there is a distinction between the goodness of fit and true success of prediction that cannot really be3

assessed without independent validation (Rykiel, 1996).4

If any of these problems occur, RK can give even worse results than even non-statistical, empirical spatial5

predictors such as inverse distance interpolation or expert systems. The difficulties listed above might also be6

considered as challenges for the geostatisticians.7

2.10.3 Beyond RK8

Although the bibliometric research of Zhou et al. (2007) indicates that the field of geostatistics has already9

reached its peak in 1996–1998, the development of regression-kriging and similar hybrid techniques is cer-10

tainly not over and the methods will continue to evolve both from theoretical and practical aspect. Got-11

way Crawford and Young (2008) recognizes four ‘hot’ areas of geostatistics that will receive attention in the12

near future: (1) geostatistics in non-euclidian space (i.e. space that accounts for barriers, streams, disease13

transmittion vectors etc.); (2) assessment of spatio-temporal support — spatial prediction methods will be14

increasingly compared at various spatial/temporal scales; users are increasingly doing predictions from point15

to area support and vice versa; (3) kriging is increasingly used with discrete data and uncertain data (this16

emphasized the importance of using Bayesian-based models), and (4) geostatistics as a tool of politics.17

What you can certainly anticipate in the near future considering regression-kriging connected methods are18

the following six developments:19

More sophisticated prediction models: Typically, regression-kriging is sensitive to blunders in data, local20

outliers and small size data sets. To avoid such problems, we will experience an evolution of methods21

that are more generic and more robust to be used to any type of data set. Recently, several authors sug-22

gested ways to make more sophisticated, more universally applicable BLUPs (Lark et al., 2005; Minasny23

and McBratney, 2007; Bárdossy and Li, 2008). We can anticipate a further development of intelligent,24

iterative data fitting algorithms that can account for problems of local hot-spots, mixed data and poor25

sampling strategies. This is now one of the major focuses of the intamap project (Pebesma et al., 2009).26

Local regression-kriging: As mentioned previously in §2.2, local regression-kriging algorithms are yet to27

be developed. Integration of the local prediction algorithms (Haas, 1990; Walter et al., 2001) would28

open many new data analysis possibilities. For example, with local estimation of the regression coef-29

ficients and variogram parameters, a user will be able to analyze which predictors are more dominant30

in different parts of the study area, and how much these parameters vary in space. The output of the31

interpolation with not be only a map of predictions, but also the maps of (local) regression coefficients,32

R-square, variogram parameters and similar. Lloyd (2009) recently compared KED (monthly precipita-33

tion in UK) based on local variogram models and discovered that it provides more accurate predictions34

(as judged by cross-validation statistics) than any other ‘global’ approach.35

User-friendly sampling optimisation packages: Although methodologies both to plan new sampling de-36

signs, and to optimize additional sampling designs have already been tested and described (Minasny37

and McBratney, 2006; Brus and Heuvelink, 2007), techniques such as simulated annealing or Latin38

hypercube sampling are still not used in operational mapping. The recently released intamapInter-39

active package now supports simulated annealing and optimization of sampling designs following the40

regression-kriging modeling. Development of user-friendly sampling design packages will allow map-41

ping teams to generate (smart) sampling schemes at the click of button.42

Automated interpolation of categorical variables: So far no tool exists that can automatically generate43

membership maps given a point data with observed categories (e.g. soil types, land degradation types44

etc.). A compositional RK algorithm is needed that takes into account relationship between all categories45

in the legend, and then fits regression models and variogram models for all classes (Hengl et al., 2007b).46

Intelligent data analysis reports generation: The next generation of geostatistical packages will be intelli-47

gent. It will not only generate predictions and prediction variances, but will also provide interpretation48

of the fitted models and analysis of the intrinsic properties of the input data sets. This will include detec-49

tion of possible outliers and hot-spots, robust estimation of the non-linear regression model, assessment50
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of the quality of the input data sets and final maps. The R package automap, for example, is pointing to 1

this direction. 2

Multi-temporal, multi-variate prediction models: At the moment, most of the geostatistical mapping 3

projects in environmental sciences focus on mapping a single variable sampled in a short(er) period 4

of time and for a local area of interest. It will not take too long until we will have a global repository of 5

(multi-temporal) predictors (see further section 4.1) and point data sets that could then be interpolated 6

all at once (to employ all possible relationships and cross-correlations). The future data sets will defini- 7

tively be multi-temporal and multi-variate, and it will certainly ask for more powerful computers and 8

more sophisticated spatio-temporal 3D mapping tools. Consequently, outputs of the spatial prediction 9

models will be animations and multimedia, rather then simple and static 2D maps. 10

Although we can observe that with the more sophisticated methods (e.g. REML approach), we are able 11

to produce more realistic models, the quality of the output maps depends much more on the quality of input 12

data (Minasny and McBratney, 2007). Hence, we can also anticipate that evolution of technology such as 13

hyperspectral remote sensing and LiDAR will contribute to the field of geostatistical mapping even more than 14

the development of the more sophisticated algorithms. 15

Finally, we can conclude that an unavoidable trend in the evolution of spatial prediction models will be 16

a development and use of fully-automated, robust, intelligent mapping systems (see further §3.4.3). 17

Systems that will be able to detect possible problems in the data, iteratively estimate the most reasonable 18

model parameters, employ all possible explanatory and empirical data, and assist the user in generating the 19

survey reports. Certainly, in the near future, a prediction model will be able to run more analysis with less 20

interaction with user, and offer more information to decision makers. This might overload the inexperience 21

users, so that practical guides even thicker than this one can be anticipated. 22
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