
Chapter 7

Grid-based Soil Information
System∗

“It is now quite possible to combine information derived from
DEMs and satellite observation with profile data and numerical

models of soil processes to produce a rich, predictive models of the
soil to meet both the purposes of research in soil formation and

landscape development and practical considerations of land
suitability assessment, decision making or the review of

development scenarios.”

[P.A. Burrough, announcing future research in “Continuous classification in soil
survey: spatial correlation, confusion and boundaries”, Geoderma, vol. 77(2-4):

115-135]

∗based on: Hengl, T., 2004? A hybrid grid-based soil information system based on the mixed
model of spatial variation. Geoderma, in review.
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7.1 Introduction

A Soil Information System (SIS), also referred to as a Soil Geographical Database
(SGDB), is a commonly used term for a thematic GIS specifically designed to provide
(geo)information on soils (Burrough, 1991). This is a structured digital version of
soil maps and soil survey reports associated with data from laboratory analysis. A
Conventional SIS consists of:

1. a polygon map, representing the soil bodies;

2. a point map, representing profile observations, and

3. attribute tables representing sampled descriptive and physical or chemical soil
properties.

The polygon map is a class-type map, the classes are soil mapping units (further
referred to as SMUs) and the profiles are organized into a relational database and
linked to the SMUs via their coordinates or soil types (Zinck & Valenzuela, 1990).
This system follows the Discrete Model of Spatial Variation (Heuvelink, 1998). The
key function of a SIS is to serve the users for data retrieval, spatial queries, statistical
analysis and visualisation of results. The profile data is used to make attribute or
thematic maps and statistical representations by averaging the values per SMU
type or soil type (Burrough, 1993a). Similarly, the SMU’s can be directly linked
to interpretation tables e.g. soil suitability classes. The above-described system is
also referred to as the “conventional approach” to the soil mapping and has been
adopted and used in most of the World today, especially at regional and national
scales.

For many GIS professionals, working on data integration, a critical layer in a
multi-thematic GIS, particularly when utilized in land management decisions, is soil
survey information (Maclean et al., 1993). For other SIS external users, such as
agronomists, land use planners or civil engineers, the concepts of soil classes and soil
mapping units are often harder to grasp and interpret than the land use types or
vegetation types. Instead of the map of soil types, the external users are often more
interested into the maps of soil interpretations (e.g. suitability for vine production)
or limiting land characteristics (e.g. depth to gleying) or technical properties of the
soils (e.g. texture fractions, depth to the cemented layers etc.) (Dent & Young,
1981). Moreover, modern users require soil geoinformation at increasingly finer level
of detail and increasingly higher accuracy.

There are several likely reasons that conventional soil maps are unpopular among
the external users. First, the concept of soil types is probably the fuzziest from all
environmental sciences, as the soil bodies are hidden, often irregular or random in
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distribution (Burrough et al., 1997). Second, classification systems have been an
object of dispute and it was not until the end of the last century that an official
international classification system (FAO, 1998) was accepted. Even today, there is
still a high chance that two soil surveyors, working independently in the same pit,
will identify two different types of soils. Third, analytical procedures are missing
in some phases of soil mapping or are not fully documented. For example, the soil
boundaries are drawn by following the mental model in surveyor’s head rather than
by an objective procedure (Cook et al., 1996). Hence, soil survey is still considered
by some to be more of an art than a science (Hudson, 1992). The fourth cause of the
general low confidence in the soil maps is that their operational quality, i.e. accuracy,
lineage and completeness, has often been proved to be lower than expected (Mars-
man & de Gruijter, 1987; Burrough, 1993a). Finally, the concept of SMUs and re-
lated polygon-based organisation of SIS is not immediately suitable for multi-source
data integration and quantitative environmental modelling (Ventura et al., 1996).
Some more recent conceptual designs of SGDBs, e.g. by Fernandez & Rusinkiewicz
(1993), are often unnecessary too complex and therefore user-unfriendly for external
users. This is most probably because: (a) the soil surveyors often produce multiple-
component mapping units, which are harder (sometimes impossible) to organize and
query and (b) SGDB use several entities at the same time (mapping units, pedons,
horizons), which can be connected in several ways, thus confusing the external users.

The above-listed problems with the conventional approach have been a major
inspiration for researchers in the last decade or two. In early 90’s, McSweeney et al.
(1994) laid the foundation for a new four-stage framework for modelling the dis-
tribution of soils. From then, the following two developments have shown to be
especially promising: use of auxiliary or secondary data, such as terrain parame-
ters and remote sensing images (Dobos et al., 2000; McKenzie et al., 2000), and
use of new concepts and methods, such as continuous classification to model the
soils more successfully (McBratney et al., 1997). The use of auxiliary data to im-
prove mapping of soil variables has been especially prominent in Australia (Carlile
et al., 2001). Also in the Netherlands, there has been a significant shift towards the
quantitative methods for inventarization and utilization of soil data (Buurman &
Sevink, 1995). Even in the USA, where the soil mapping is fully dominated by the
U.S. Soil Taxonomy and the Soil Survey Manual, there are more and more alter-
native systems being developed (Zhu et al., 2001). This, however, does not mean
that the photo-interpretation or empirical knowledge on soils should be cast out
from operational soil survey. On the contrary, case studies have shown that the
purely geostatistical methods do not always give prediction maps better than those
obtained by subjective photo-interpretation (van Kuilenburg et al., 1982; Boucneau
et al., 1998).
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In this chapter a grid-based SIS, which integrates the use of photo-interpretation,
auxiliary terrain and remote sensing data, hybrid pedometric techniques, continuous
classification and advanced visualisation techniques is described. This connects the
methods from the previous chapters into a real soil survey application.

7.2 Methods

Three main aspects determine the design of a SIS: (a) concepts and elements used
(entities); (b) organizational structure and operations and (c) format and presenta-
tion of products. In the following sections, the key concepts and elements used are
listed. First, the relation between the grid size and cartographic scale is explained,
then a schematic flow of the methodological steps and explanation of algorithms for
interpolation, classification, inference, visualisation and (dis)aggregation of data is
given. Note that I refer to the proposed SIS as the hybrid grid-based SIS in the
further text — the adjective ‘hybrid’ determines both the use of the mixed model
of spatial variation and hybrid interpolation technique.

7.2.1 Key concepts

Two key concepts specifically distinguish the SIS proposed in this paper from other
similar grid-based SIS applications: use of quantitative methods in all parts of map-
ping process and combination of different mapping techniques (including photo-
interpretation, kriging and correlation with auxiliary maps). The latter ensures a
combination of the abrupt and continous transitions in space, which is referred to
as the Mixed Model of Spatial Variation (Mowrer & Congalton, 2000). This is a
combination of the discrete and continuous models of spatial variation, although
one might argue that the continuous model already can adopt both continuous and
less-continuous (discrete) transitions. The following concepts define the hybrid grid-
based SIS more closely:

� The fundamental spatial entity is a grid cell. All GIS layers are brought
to same grid resolution in order to make calculations and data integration
possible. The grid size (resolution) determines the effective scale.

� The focus is production of maps of key land characteristics. This means that
the soil mappers need to interview their users prior to the actual sampling and
select the most important land characteristics, level of detail (grid size) and
required accuracy. These wishes are then adjusted to the available funds.

� The SIS includes not only maps of soil variables and tables of soil attributes
but also auxiliary (non-soil) variables used to assist soil mapping, as well as
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derived classifications and interpretations. This means that a SIS user can get
a better insight into the original data and extend it with an additional survey
or investigate eventual problems with the data.

� Three types of operations are used to produce soil geoinformation from input
layers: interpolation, classification and inference. All these are achieved using
the GIS operations on grid maps, rather than table calculations.

� Quantitative methods are used to interpolate soil variables (universal kriging),
classify (fuzzy k-means) and retrieve them.

� Soil properties, classes, and interpretations are modelled using the mixed
model of spatial variation, so that both discrete and continuous transitions
are possible.

� The original soil description and measurements are linked to the spatial pre-
dictions and interpretations, so that the latter can be updated if the former is
augmented or corrected. This linkage is kept in tables built for this purpose.
For example, the interpolation table records the number of regression co-
efficients and kriging parameters derived from the regression and geostatistical
analysis. Consequently, each prediction or interpretation map can be updated
by updating the input maps or adding the new soil samples.

7.2.2 Selection of a suitable grid size

The grid size, i.e. the length of one side of a grid cell, is linearly related to the
cartographic scale. However, there are different ideas about the suitable grid size
for a given scale. In conventional soil cartography, the scale is commonly assessed by
using either the Maximum Location Accuracy (MLA) or Average Size Area (ASA)
of the polygons on the ground. For example, MLA on the ground when divided
with MLA on the map (e.g. 0.25 mm for maps produced according to common map
accuracy standards) gives the scale denominator (Rossiter, 2001). To assess the
scale denominator via the ASA, the square root of the nominator should be used.
These cartographic definitions can also be used to estimate the suitable grid size
for a given mapping scale. As a rule of thumb, Rossiter (2001) suggest that four
grid cells should be considered equivalent the Minimum Legible Delineation (MLD).
According to the definition of Vink (1975) the MLD is 0.25 cm2 on the map. The
suitable grid size is then:

p =

√
MLD

4
=

√
SN2 · 0.000025

2
= SN · 0.0025 (7.1)
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where p is the grid (pixel) size, MLD is the Minimum Legible Delineation area
on the ground and SN is the scale denominator. This means that for a 1:50 K scale,
MLD is 6.25 ha and suitable grid size is 125 m, which seems fairly coarse. Larger
grid sizes (0.5 mm to 3 mm on the map) have also been recommended by Valenzuela
& Baumgardner (1990). In remote sensing, the relation of the ground resolution
and the cartographic scale is somewhat stricter. For example, the Landsat images
of 30 m ground resolution are commonly related to the 1:50 K or 1:100 K scale
(Lillesand & Kiefer, 2000). Hence, the ground resolution can be defined as two
times the MLA on the ground:

p = SN ·MLA · 2 = SN · 0.0005 (7.2)

so for 1:50 K scale, a suitable grid size is 25 m.
The third criterion for the selection of the suitable grid size is empirical knowledge

of spatial variation. Ideally, the grid size should equal the minimum size of a pedon
(1 m2), especially if the soils are varying at short distances (e.g. cockpits in the Karst
area). If the soils are homogeneous spatially and show smoother transitions, much
larger grid sizes will be adequate for spatial modelling (Thompson et al., 2001). This
means that the selection of the suitable grid size should be adjusted to the spatial
variability of soils to avoid over-sampling. Florinsky & Kuryakova (2000) suggested
that, for soil-terrain modelling, adequate grid size is the one that offers the highest
predictive power, i.e. correlation coefficient in their case. The spatial variation of
soils can be estimated from the terrain data i.e. contour data. Hengl et al. (2003b)
suggest that the grid spacing should be at least half the average spacing between
the contours to represent the most changes in a terrain.

Although these three criteria give a range of possible values, a rule of thumb the
finer the grid size the better is suggested in the most cases. The importance of the
finer grid size has been proven to play an important role especially if the terrain
data is used for spatial modelling of soils (Dietrich et al., 1995; Thompson et al.,
2001). With increasingly powerful computers and cheap storage, fine grid sizes are
feasible for most study areas.

7.2.3 Interpolation, classification and inference methods

Three operations play key roles in the production of geoinformation in the hybrid
grid-based SIS: interpolation, classification and inference. Each is explained in more
detail down bellow. A flow diagram of the computational procedures is given in
Fig. 7.1. The profile data is first combined with a set of predictors to produce con-
tinuous field maps of measured soil variables. These are then classified to member-
ship maps using continuous classification and the predefined class centres. Finally,
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the interpolated soil variables, auxiliary predictors and derived memberships can be
used to derive soil interpretations, i.e. inferred soil geoinformation.

DESCRIBED AND
MEASURED SOIL

VARIABLES
(profile data)

PREDICTORS:
API, ENVIRONMENTAL
VARIABLES, REMOTE

SENSING IMAGES
(raster maps)

INTERPOLATE
SOIL VARIABLES

ON FINE GRID

SOIL
GEOINFORMATION

(soil types, land
qualities, spatial

queries)

CLASSIFY USING
CONTINUOUS

CLASSIFICATION

INTERPOLATED
SOIL VARIABLES

(raster maps)

KNOWLEDGE BANK
(pedo-transfer functions,
classification systems -
soil types or suitability

classes)

INTERPOLATION PARAMETERS

- regression coefficients
- semivariogram parameters

INFERENCE PARAMETERS

- attribute tables
- parameters of the pedo-transfer
 functions
- suitability factor thresholds

CLASSIFICATION PARAMETERS

- class definitions (centers)

SOIL CATEGORIES
(membership maps)

RETRIEVE
CLASIFFY

QUERY
TRANSFORM

Figure 7.1: Schematic flow of methodological steps.

Interpolation

The generic framework based on the step-wise principal component logistic regression-
kriging model, was used to interpolate the soil variables. This algorithm can use in-
formation from the photo-interpretation, auxiliary data and spatial auto-correlation
at the same time. The algorithm is explained in more detail in chapter 5.

Classification

After all selected soil variables have been interpolated they can be classified using
the point observations and the class centres for each category (e.g. soil classes). A
flexible classification algorithm is the fuzzy k-means classification, which gives a
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membership map for each class. This is the concept of continuous soil mapping,
first introduced by ? and then further on developed by de Gruijter et al. (1997).
The limitation of their approach, however, is that it employs only geostatistical
interpolation while the auxiliary variables are ignored. This approach is somewhat
different since first the soil properties are mapped over the whole area and then
classified per each grid. This generally means that the produced memberships will
follow the pattern of the relief and other predictors, thus giving a more realistic
picture. The classification of maps and resulting continuous soil map is explained2

in more detail in chapter 6.

Inference

The derived memberships, also referred to as similarity values (Zhu et al., 1997),
can now be linked to the attribute tables, pedo-transfer functions or suitability
ranks (knowledge bank). The key columns can be the soil categories, which is a
common way of organizing the SGDB (Zinck & Valenzuela, 1990). The inferred
soil attribute is then mapped directly from the membership maps using the linear
additive weighting function (Zhu et al., 2001):

Ŝ(i) =
k∑

c=1

µc(i) · Sc

k∑
c=1

µc(i) = 1 i = 1, .., N (7.3)

where Ŝ(i) is the inferred soil attribute at ith grid position and Sc is the modal
value of the inferred soil attribute of the cth category. For example, imagine four
membership maps of soil type A, B, C and D. The knowledge bank shows that soil
type A has 10%, B 10%, C 30% and D 40% of clay and the membership values at
a grid position are 0.6, 0.2, 0.1 and 0.1, so the Eq. (7.3) will estimate the average
clay content of 15%. Note that although the method assumes that a linear weighted
average best represents the overall value, the technique can be extended to any
aggregation method.

The membership maps can also be used for land suitability assessment. One
option is to use the limitation scoring system described by Triantafilis et al. (2001).
Here, the key issue is to derive limitation scores (or negative points) based on the
definition of land qualities and threshold limits. In the case of the hybrid grid-
based SIS, the limitation score can be calculated per each pixel by cumulatively
using membership maps, interpolated soil variables (e.g. gleying properties) and/or
auxiliary variables (e.g. slope):

2See also supplementary materials for ILWIS commands.
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l(i) =
k∑

c=1

µc(i) · lc +
t∑

r=1

Sr(i) · lr
k∑

c=1
µc(i) = 1 i = 1, .., N (7.4)

where l is the accumulated limitation score, lc is the limitation score of the cth soil
type, Sr is the classified auxiliary or soil variable and lr is the limitation score of
the rth class. For example, the same grid position as above (A, B, C, D) and the
limitations scores 5, 0, 0, 20, give the average limitation score 5. The slope at the
same grid position is 10%, which gives 3 more points (9–16%) so that the total
accumulative score is 8. The accumulated limitation score, ranging from 0 to ∞ is
transformed to continuous land suitability by:

Ls = e−0.1·l Ls ∈ [0, 1] (7.5)

where Ls is the continuous land suitability and l is the accumulated limitation score.

7.2.4 Aggregation and disaggregation

Aggregation or down-scaling is a process of reducing the scale of map and disaggre-
gation is the opposite process. In the grid-based SIS, aggregation means changing to-
wards a coarser resolutions and disagreggation towards finer resolutions, i.e. smaller
grid sizes. A schematic example of aggregation and disaggregation in the hybrid
grid-based SIS is shown in Fig. 7.2. This models follows the conceptual model of
scaling described by McBratney (1998). One advantage of the hybrid grid-based SIS
is that the aggregation is easier than with the conventional system where both the
soil boundaries and the legend need to be adjusted. In the grid-based SIS, each in-
terpolated continuous soil variable can be resampled to a coarser grid using standard
image processing algorithms such as bilinear resampling (Lillesand & Kiefer, 2000).
The scaling of the continuous variables is much less problematic than the scaling of
categorical variables, such as soil types. The resampling of soil types to a coarser
resolution implies that the small local patches will be merged with the dominant
types and disappear from the map. Because we deal with maps of soil memberships,
we can first resample these to a coarser resolution and then re-standardize them by:

µS−
c (i) =

µ+
c (i)

k∑
c=1

µ+
c (i)

c = 1, 2, ...k i = 1, 2, ...N (7.6)
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where µS−
c is the down-scaled membership value and µ+

c is the resampled member-
ship. A longer alternative is to re-calculate soil variables and re-classify soil types
from the input maps at finer resolutions.

The hybrid grid-based SIS is also attractive for the purpose of up-scaling, which
is in the conventional SIS almost impossible. Because the accuracy of interpolation
depends on the quality and detail of auxiliary variables (terrain data, remote sens-
ing images), one can imagine that improving the spatial detail of the predictors will
also reflect on the interpolation results. A caution should be made not to ‘blow-up’
the scale outside the realistic limits defined by the standards. For example, if the
inspection density is four observations per km2 the largest scale that the existing
dataset can be disaggregated to is 1:25 K. Additional observations are recommended
to achieve larger scales.

INPUT VARIABLES
(PREDICTORS)

scale S

MODEL

scale S

OUTPUT
(SOIL MAPS)

scale S

INPUT VARIABLES
(PREDICTORS)

scale S+
FINER GRID

Disaggregation

MODEL

scale S+

OUTPUT
(SOIL MAPS)

scale S+

INPUT VARIABLES
(PREDICTORS)

scale S-

COARSER GRID

Aggregation

MODEL

scale S-

OUTPUT
(SOIL MAPS)

scale S-

NO

YES

Figure 7.2: Schematic example of aggregation and disaggregation process in the hybrid
grid-based SIS. Note that although direct disaggregation of soil maps is possible, it is not
recommended. S indicates scale: S− are smaller scales and S+ are larger scales.

7.2.5 Case study and data analysis

The methodology was developed and tested using a data set from Baranja hill and
a portion of the adjacent Danube terraces in Eastern Croatia. The study area is
3.8Ö3.8 km square (centred on 45°47’40” N, 18°41’27” E) and corresponds to the

148



7.2 Methods 149

size of a single 1:20 K aerial photo (Fig. 7.3). The main geomorphic facets are hill
summits and shoulders, eroded slopes of small vales, vale bottoms and high and
low river terraces. The elevations range from 80 to 240 m. I first produced an
API map using the geopedological approach of Zinck & Valenzuela (1990). I then
made 59 profile observations using a random design (40) and two transect studies
(19) (Fig. 7.3c). The boundaries were finally cross-checked on the field to produce
a conventional soil map with the legend.

The observed soil types ranged from Calcaric Regosols, Cambisols to Kastanozems
(FAO, 1998). The Calcaric Cambisols are the dominant soil type in the hilland, while
in the vale bottoms and in the lower floodplain, I observed gleyic properties. At some
locations on the hill summits, I observed occurrence of a hypocalcic horizon (> 15%
calcium carbonate equivalent). This layer is neither cemented nor close to the sur-
face so it does not present a limitation for agriculture. I observed the following
land use types: vineyards, orchards, natural grasslands, meadows (for animal pro-
duction), natural forest and woodland (hunting resorts), residential use, fish pond,
water control (channels), animal farming and crop fields. The most common crops
were maize and wheat, vegetables (manual farming), sugar beet and sunflower.

The most controlling factors for agricultural management in the area are: slope,
solum thickness, soil alkalinity and water-saturation conditions. Finally, I selected
the following six soil variables as the most important diagnostic land characteristics:

1. Depth to the parent material , i.e. thickness of solum (SOLUM) measured in
cm.

2. Occurrence of the gleying properties (GLEY P) — coded with “0” for not ob-
served, “1” for gleying properties within 50 cm and “0.5” for gleying properties
within 50 cm.

3. Occurrence of the Mollic horizon (MOL H) — coded with “0” for not observed
and “1” for observed Mollic horizon.

4. Occurrence of the Calcic horizon (CALC H) — coded with “0” for not observed
and “1” for observed Calcic horizon.

5. Thickness of the topsoil (A DEPTH) measured in cm.

6. Silt fraction (0.002–0.05 mm) content in topsoil (A SILT) estimated using the
centroids of the textural classes and expressed in percentage. The texture
classes ranged from sandy-loam, loam, silt loam to silty clay loam.

Note that the indicator variables GLEY P, MOL H and CALC H have either
0 and 1 value which can not be transformed (see chapter 5, page 94). To avoid
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division by zero or ln(0) problems, I introduced a small adjustment of 0.01, so that
0 becomes 0.01 and 1 becomes 0.99. A more optimal approach would be to estimate
these threshold iteratively in a statistical package.

The working scale of the project was 1:50 K, hence, a grid size of 25 m, which
corresponds to 0.5 mm on the map was selected. For the predictors, I used six terrain
parameters (Hengl et al., 2003b): elevation (DEM), slope gradient in % (SLOPE),
profile curvature (PROFC), plan curvature (PLANC), wetness index (CTI) and
slope insolation (SINS); all derived in ILWIS3. As remote sensing-based predictors,
I used the intensity (value on the grey scale) of the aerial photo (AP), the standard
deviation image filter of the AP map (AP STD) and NDVI map derived from the
Landsat 7 image. The aerial photo was taken in May 1998 and the satellite image
in August of 1999. I assumed that these remote sensing-based variables would help
explain the occurrence of horizons and depths. The nine maps were first trans-
formed to nine predictive components (SPCs) using factor analysis in ILWIS. This
was done to reduce the multicollinearity and optimize the selection of the best subset
of predictors4.

In addition to the SPCs, nine soil mapping units (SMUs) were transformed
to nine indicator variables: colluvial footslopes (SMU1), eroded slope (SMU2),
floodplain (SMU3), glacis (SMU4), high terrace (SMU5), scarp (SMU6), shoulder
(SMU7), summit (SMU8) and vale bottom (SMU9). We also added three land use
indicator variables: agricultural land (LU1), natural forest (LU2) and pastures and
orchards (LU3). The total number of predictors was 21 (Fig. 7.3a and b). The
target soil variables and the predictors were imported to a regression table consist-
ing of 59 observations, 9 target variables and 21 predictors. The ‘best’ subset of
predictors (SPCs, SMUs and LUs) was selected using the stepwise regression in the
S-PLUS statistical package (MathSoft Inc., 1999). The regression coefficients and
interpolated the residuals were then calculated over the whole study area using the
regression-kriging (see chapter 5).

The set of nine interpolated soil maps was further used to classify the whole area.
The membership maps were calculated using the supervised fuzzy k-means classifi-
cation. First the class centres were calculated by averaging the nine soil variables
per soil type. For the indicator soil variables the sampled standard deviation was
zero, which is unsolvable. The indicator variables follow a binomial distribution, so
that the standard deviation can be estimated using:

ŝz =

√
p · (1− p)

k
(7.7)

3See lecture note “Digital Terrain Analysis in ILWIS”, available with supplementary materials.
4See chapter 5 for more details.
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(a) (b)
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Figure 7.3: Multi-source predictors: (a) auxiliary predictors terrain parameters and remote
sensing data; (b) aerial photo-interpretation map (API) and land use map and (c) location
of the 59 soil profile observations. DEM – elevation; SLOPE – slope gradient in %; PROFC
– profile curvature; PLANC – plan curvature; CTI – wetness index; SINS – slope insolation;
AP – intensity of the aerial photo; AP STD – standard deviation of the AP map and NDVI
map derived from the Landsat 7 image.

where p is the threshold probability (e.g. 95%) and k is the number of classes. In
the case of MOL H and CALC H, the number of classes is two and the standard
deviation is 0.15, while in the case of GLEY P the standard deviation is 0.13.

Membership maps for the six observed soil types were derived: Siltic, Cal-
cisols (CL s), Calcari-Eutric Cambisols (CM ce), Gleyi-Calcaric Cambisols (CM gc),
Calcari-Eutric Gleysols (GL ce), Calci-Siltic Kastanozems (KS cs) and Calcari-Eutric
Regosols (RG ce). The memberships were then used to derive the limitation score
for the land utilisation type (wheat) using the soil types and slope classes as input
(Eq. 7.4)). In addition, the membership values were resampled to the 100 m grid
using the Eq. (7.6) to demonstrate disaggregation aspects.
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7.2.6 Comparison of conventional and hybrid grid-based SIS

The hybrid grid-based SIS was compared with the conventional polygon-based SIS
of the same area. I first compared the predictability of SMUs and SPCs, which
gives an idea which predictors explain the measured soil variables better. This
was done by comparing the correlation coefficient and coefficient of determination
between all target variables and predictors. The two systems were also compared
for their mapping efficiency using: amount of variation explained and thematic
confusion. Amount of variation explained was assessed by calculating the sum of
squared residuals, i.e. RMSE for each of the six interpolated variables. The lower
the RMSE , the better is the fitting of the data. The thematic confusion was assessed
by calculating the confusion index among each spatial entity:

CI = 1− (µmax − µ2nd max) (7.8)

where µmax is the highest membership and the µ2nd max is the second highest mem-
bership at the same location (Burrough et al., 1997). The lower the CI, the higher
the certainty of the classification system. Note that the CI for SMUs is calculated
by first calculating composition of soil types in percentage. The CI value is then
attributed to each SMU to derive the overall or average confusion index. In addi-
tion to the statistical measures, a summary comparison of the two systems for their
cost-effectiveness, flexibility and technical properties was made.

7.3 Results

7.3.1 Mapping soil variables

The factor analysis on the continuous predictors showed that the information overlap
is low. The first three SPCs accounted for about 65% of the total variation and it ap-
pears that all SPCs need to be taken into account. A first comparison of correlation
coefficients between the all combination of SPCs and SMUs with target variables
showed that the auxiliary predictors are slightly more correlated with the target soil
variables than the SMUs (Fig. 7.4a). However, the amount of variation explained
in the multivariate models (adjusted R2) showed that the SMUs are in general bet-
ter predictors than the SPCs, except for SOLUM and CALC H (Fig. 7.4b). In all
cases, except for CALC H, the regression models explained about 40% of variation
and were statistically significant (p <0.001). Note that the discrepancy between
the univariate correlation coefficients (r) and coefficients of multiple determination
(R2) in Fig. 7.4 is because there is still some thematic overlap in the SPCs. The
SMUs (indicator variables) have no overlap by definition so that lower univariate
correlations will accumulate more effectively in the multivariate model.
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In all cases the step-wise regression selected from 3 to 6 predictors from the 21
possible, or 25% in average (Table 7.1). The best predictors were:

� for SOLUM – SPC1 (CTI, SLOPE), SPC3 (AP STD) and SMU5 (high ter-
race);

� for GLEY P – SMU3 (floodplain area), SMU9 (vale bottom) and SPC9 (CTI)

� for MOL H – SMU4 (glacis), SMU5 (high terrace) and SPC9 (CTI);

� for CALC H – LU2 (natural forests) and SMU2 (eroded slope);

� for A DEPTH – LU1 (agricultural land) and SMU5 (high terrace) and

� for A SILT – SMU9 (vale bottom), SPC9 (CTI) and SMU3 (floodplain area).

Many predictors, on the other hand, have been ignored by the system, such as
SPCs 2,6,7,8, SMUs 1,6,7,8 and LU3. The models in general reflect our empirical
idea of the distribution of soils. For example, I observed the gleyic properties in only
two mapping units and assumed that these are closely related with the potential of
water accumulation, which was also confirmed by the model (SMU3, SMU9 and
CTI). In the case of CALC H, the current predictors are of little help. It seems that
this variable is controlled by the parent material and not geomorphology or land use.
Note that the adjusted R2’s (Table 7.1) are somewhat higher than the ones in the
Fig. 7.4. This is because a lower number of predictors is used for final prediction,
which typically means a lower adjusted R2.

The geostastical analysis of the residuals showed the pure nugget variation for
the SOLUM and GLEY P, fairly long-range spatial dependence for MOL H and
CALC H and somewhat shorter-range spatial dependence for A DEPTH and A SILT
(Table 7.1). The pure nugget effect for residuals is reasonable for GLEY P because
most of the variation (70%) has been accounted for by the model. For SOLUM,
the pure nugget effect is somewhat more surprising since the residuals are still sig-
nificant. In this case, only 37% of the total variation has been explained by the
regression analysis. This means that SOLUM is much noisier variable and much
harder to map, which is probably due to the fuzzy character of the boundary be-
tween the solum and parent material. The ordinary kriging of residuals practically
‘saved’ the prediction of CALC H, despite the poor regression model. The residuals,
however, showed strong spatial dependence, which was sufficient to map it using
ordinary kriging.

A visual comparison of the interpolated maps produced using the conventional
approach (Fig. 7.5, left) and hybrid interpolation (Fig. 7.5, right) suggests that the
hybrid system in general offers more detail and higher contrast. In the case of the
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Table 7.1: Soil variables (logit-transforms), selected sub-sample of predictors, adjusted R2

and estimated variogram parameters.
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Table 7.1: Soil variables (logit-transforms), selected sub-sample of predictors, adjusted R2

and estimated variogram parameters.

Soil variables (logit-transforms)

SOLUM++ GLEY P++ MOL H++ CALC H++ A DEPTH++ A SILT++

R
eg

re
ss

io
n

co
effi

ci
en

ts
(p

re
d
ic

to
rs

)

Intercept -0.72 -1.953 -2.848 -3.888 -2.014 -0.624

SPC1 0.0114 -0.002 0.0284 0 -0.002 0.0026

SPC2 0 0 0 0 0 0

SPC3 0.0178 0 0 0 -0.008 0

SPC4 0 -0.004 0 0 0 0.0029

SPC5 0.013 0 0 0 0 0

SPC6 0 0 0 0 0 0

SPC7 0 0 0 0 0 0

SPC8 0 0 0 0 0 0

SPC9 -0.013 -0.043 -0.058 -0.018 -0.01 0.0111

SMU1 0 0 0 0 0 0

SMU2 -0.18 0 0 1.0332 0 0

SMU3 0 4.965 0 0 0 -0.622

SMU4 0 0 8.7559 0 0 0

SMU5 0.3211 0 8.8444 0 0.7607 0

SMU6 0 0 0 0 0 0

SMU7 0 0 0 0 0 0

SMU8 0 0 0 0 0 0

SMU9 0 5.9859 0 0 0 -0.777

LU1 0 0 0 0 0.4484 0

LU2 0 0 0 1.4065 -0.066 0

LU3 0 0 0 0 0 0

R2
a 0.37 0.70 0.59 0.13 0.41 0.61

V
a
ri

o
g
ra

m

Variogram
model

nugget
effect

nugget
effect

exponential exponential exponential exponential

C0 0.156 3.78 0.27 0 0 0

C0+C1 0.156 3.78 26.2 8.28 0.192 0.122

R (m) 0 0 10 km 759 194 69
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hybrid systems, not only discrete and continuous transitions can be seen, but also
the pattern of relief or land use is reflected via the auxiliary maps. This hybrid
pattern is especially distinct in the map of A SILT: the highest values follow the
steeper slopes, discrete transitions are visible in the floodplain area but also the
kriging pattern with hot spots (Fig. 7.5c, right).

The conventional system is more sensitive to the fairly contrasting inclusions
in the mapping unit. For example, the prediction map of the GLEY P for the
conventional system shows a value of 0.1 even at locations where no gleying could
have occurred (Fig. 7.5b, left). This is because there was a single profile (inclusion)
in this mapping unit, which somehow finished in the neighbouring polygon (probably
boundary misplaced during API). This affected then the whole attribute map giving
an unrealistic prediction of occurrence of gleying properties.

Comparison of the RMSE at observation points for these six variables showed no
large difference for SOLUM (17.4 cm vs. 17.8 cm) and GLEY P (0.18 vs. 0.13), but
in all other case was the data better fitted with the hybrid interpolation technique
(0.21 vs. 0.02 for MOL H, 0.26 vs. 0.01 for CALC H, 8.6 cm vs. 0.7 cm for
A DEPTH and 7.8% vs. 1.1 for A SILT).
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Figure 7.4: Comparison of relationships between the soil variables and soil mapping units
and auxiliary predictors: (a) density histograms of the correlation coefficients for univariate
models and (b) coefficients of multiple determination for fitted soil variables. SOLUM -
depth to the parent material in cm; GLEY P - occurrence of the gleying properties; MOL H
- occurrence of the Mollic horizon; CALC H - occurrence of the Calcic horizon; A DEPTH
- thickness of the topsoil in cm; A SILT - silt fraction content in topsoil.
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7.3.2 Classification, down-scaling and inference

The classified map of soil types (Fig. 7.6b) reflects empirical ideas, following the
fieldwork experience, about the distribution of the soils. The CM ce is the dominant
soil type covering 61% of the study area, CM gc and GL ce occur as expected at
lowest convex positions, while the RG ce occurs more locally (slopes). The CL s
was depicted as the highest membership in only 0.6% of the study area and as the
mapping of Calcic horizon was difficult.

From the sampled class centres for the six soil types (Table 7.2), it can be seen
that some classes can be distinguished in the attribute space more easily then others.
For example, KS cs is clearly a distinct soil type: deep soil, with occurrence of
Mollic horizon and no gleying properties. The factor analysis of class centres also
showed that especially CM ce and RG ce; and CM gc and GL c are similar soil
types. This information about the similarity of soils was then used to produce a
fuzz-metric legend and then visualise soil taxa and problematic areas as a continuous
soil map (Fig. 7.6c). This mixed-colour map indeed shows highest classification
uncertainty between the CL s and KS cs (note the white patches in Fig. 7.6c). This
information can now be used to collect additional samples or cross-check accuracy of
our classification system. Also note that the continuous soil map shows three major
groups of soil types indicated as bluish (CM ce, RG ce and CL s), greenish (GL ce,
CM gc) and reddish (KS cs).

The average confusion index for the conventional SIS, calculated using Eq. (7.8),
was 51% (±28%) for the whole map. The confusion index for the hybrid grid-based
SIS was 17% (±14%) in average (see the legend in Fig. 7.6a). This means that
the spatial confusion between the membership maps is significantly lower (p < 0.05)
than the confusion within the SMUs for the conventional SIS. After the down-scaling
(100 m grid), the less frequent classes did not disappear from the map as we would
have expected. For example CL s occupies about 9 ha in the 100 m scale map,
while it occupied 7.9 ha in the 25 m scale map (Fig. 7.6d). This means that the
proposed aggregation algorithm retains smaller-size features if their membership is
more distinct.

From the membership maps and classified slope map the accumulated limitation
score and the resulting continuous land suitability for wheat were derived. The
schematic example of the calculation is shown in Fig. 7.7. I used the following
limitation scores: 3 (CL s), 1 (CM ce), 1 (CM gc), 9 (GL ce), 0 (KS cs) and 9
(RG ce) for soil types and 0 (0-2%), 1 (2-8%), 3 (9-16%), 9 (17-25%) and 27 (> 25%)
for the slope classes.
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Figure 7.5: Comparison of (a) depth to the parent material (SOLUM); (b) occurrence of the
gleying properties (GLEY P) and (c) silt fraction content in topsoil (A SILT), interpolated
using the mapping units only (left) and the hybrid interpolation algorithm (right).

7.4 Conclusions and discussion

In this chapter I have presented some key concepts, operations and organizational
issues of a grid-based SIS as an alternative to the conventional polygon-based SIS
and plain geostatistical techniques. The proposed hybrid grid-based SIS was not
developed for purpose of replacing conventional techniques and concepts, replac-
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Figure 7.6: Comparison of (a) the conventional soil map with compound composition of
mapping units, (b) defuzzified (highest) membership map from the supervised fuzzy k-means
classification with freely selected colours; (c) the continuous soil map with a circular legend
and (d) down-scaled map to 100 m grid. CL s - Siltic, Calcisols; CM ce - Calcari-Eutric
Cambisols; CM gc - Gleyi-Calcaric Cambisols; GL ce - Calcari-Eutric Gleysols; KS cs -
Calci-Siltic Kastanozems and RG ce - Calcari-Eutric Regosols.
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Table 7.2: Class centres used to classify the six soil types from six attributes.

Sampled class centres and variation around the central values

SOLUM GLEY P MOL H CALC H A DEPTH A SILT

(σ) (σ) (σ) (σ) (σ) (σ)

cm - - - cm %

CL s
37.4 0 0 1 17 63

(11.4) (0.13) (0.15) (0.15) (12) (5.1)

CM ce
60.16 0 0 0 22.48 61

(16.3) (0.13) (0.15) (0.15) (6.9) (8.6)

CM gc
77.75 0.5 0 0 32.5 37.3

(14.5) (0.13) (0.15) (0.15) (14.5) (3.2)

GL ce
63.75 1 0 0 23.25 29.5

(25) (0.13) (0.15) (0.15) (4.6) (7.1)

KS cs
92.88 0 1 0 47.13 51

(14.2) (0.13) (0.15) (0.15) (5.5) (12.8)

RG ce
36.67 0 0 0 17.22 61.6

(15.2) (0.13) (0.15) (0.15) (6.5) (4.3)

ing existing soil databases or devaluating the importance of photo-interpretation
or existing classification systems, but to employ these in a more objective manner.
Moreover, the proposed hybrid grid-based SIS is a generalization of the conventional
approach. One can imagine that if the within-unit variability is infinitively small
and if there is no overlap between class definitions, than the hybrid SIS will show
the same, so-called, “double-crisp” form (crips objects and crisp classes) as a con-
ventional map. In fact, in our case study the API units played an important role
and the transition of soils was, consequently, more discrete in many parts of the
area.

The summary comparison of the two systems can be seen in Table 7.3. The
important advantages of the hybrid grid-based SIS that need to be emphasized are:

� It directly offers a map of soil types rather than a map of the soil-mapping
units.

� All variables, including the soil types and land suitability are mapped in a
continuous manner and on fine grain of detail. In this case study, the average

159



160 Organization

Table 7.3: Summary comparison between the conventional polygon-based and grid-based
SIS. The technical details apply to the study area.
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Table 7.3: Summary comparison between the conventional polygon-based and grid-based
SIS. The technical details apply to the study area.

Aspect Polygon-based Grid-based

Entity Polygon Grid Average

Detail (average size
area)

33.8 ha (581 m) 0.0625 ha (25 m)

Content
Polygon class-type map
linked with attribute tables
(profile observations)

Set of grid maps linked with
attribute tables (regression
coefficients, variogram pa-
rameters, central values, limi-
tation scores)

Interpolation
method

Averaging per SMU or soil
type

Regression-kriging

Products

Distribution of soil mapping
units with composition; soil
profile database; crisp land
suitability

Distribution of soil variables
(land characteristics), soil
types and land suitability
with estimated uncertainty

Purity of entities
(confusion index)

low (51% in average) high (17% in average)

Level of detail and
reliability of predic-
tions

Only average or modal values;
contrasting inclusions may be
listed separately

Higher level of detail; the pre-
dictions follow the pattern in
relief, vegetation or land use,
according to factors included
in the model

Data input and
analysis

API by surveyors conceptual
knowledge; lines are digi-
tized; topology is created in
GIS ; soil profile observations
are organized in a relational
database

Auxiliary maps are obtained
from secondary sources; com-
putations can be demanding
and the end product depends
on the quality of the input
data and algorithms used for
interpolation

Memory use
Single vector map and set of
tables (very low); 10 KB per
km2 at 1:50 K

About 21 map of predictors,
9 maps of transformed predic-
tors (SPCs), 6 maps of soil
variables, 6 maps of soil types
etc. (very high); 400 KB per
km2 at 25 m resolution

units.

� All variables, including the soil types and land suitability are mapped in a
continuous manner and on fine grain of detail. In this case study, the average
size of detail was about 25 times smaller for the grid-based SIS.
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Figure 7.7: Mapping continuous land suitability for wheat: (a) memberships for soil types
and slope classes; (b) accumulated limitation score and (c) continuous land suitability. CL s
- Siltic, Calcisols; CM ce - Calcari-Eutric Cambisols; CM gc - Gleyi-Calcaric Cambisols;
GL ce - Calcari-Eutric Gleysols; KS cs - Calci-Siltic Kastanozems; RG ce - Calcari-Eutric
Regosols and SLOPE - slope gradient in %.

size of detail was about 25 times smaller for the grid-based SIS.

� The products of mapping are not only maps of soil variables but also the
respective prediction uncertainty (i.e. prediction error or confusion index).

� Maps are more suitable for integration with other geo-data.

� It in general provides more reliable soil geoinformation with lower thematic
confusion and higher level of detail than the conventional survey.

� The original soil observations and interpolation/classification parameters are
linked to the GIS calculations via the special tables and can be updated.

On the other hand, the disadvantages of the hybrid grid-based SIS are:
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� It is computationally demanding as it requires number of GIS, statistical op-
erations with each variable. It also consumes a lot of memory: I estimated
that for this case study the memory consumption per km2 is about 40 times
bigger for grid-based SIS.

� It requires number of auxiliary variables, which also means somewhat higher
investments.

� Because it is data-driven, it fully depends on the quality of the input data.
The prediction maps, however, can always be saved with a good API map and
manual correction of problematic features.

The number of observations also plays an important role. In this case study I have
dealt with a small case study and relatively small number of profile observations.
This caused some problems for the fitting of the data, variogram modelling and
factor analysis of the thematic similarity. A much larger number of observations,
predictors and soil variables will probably be more satisfactory to the real users. I
also experienced problems with interpolation of some variables. In this case study
this was occurrence of the calcic horizon, which seems to be difficult with this set of
predictors. This feature could have been probably explained better with the use of
parent material as auxiliary map.

Also note that some of the applied algorithms, such as the continuous land suit-
ability, are not completely satisfactory. Although this method objectively combines
limitations, it depends entirely on the subjective assignment of limitation scores to
classes, and also on the concept that a linear combination best expresses suitability.

A more flexible system will be to keep all original data in original cell size (or as
sample points) and up or downscale as necessary depending on the algorithm. The
input data often comes at different resolutions (multi-source data), for example,
terrain data may be available at finer resolution (10 m), satellite data at coarser
resolutions (30 m) or very coarse resolutions (1 km). Calculations with raster maps
of different resolutions without resampling, however, are still not possible in many
GIS packages. Another improvement would be to use the kriging by moving window
and not the global estimation of the regression residuals. This would, however,
require even more input points and computational power.
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